Skip to main content
Log in

Carbon Accumulation in Neotropical Dry Secondary Forests: The Roles of Forest Age and Tree Dominance and Diversity

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Tropical secondary forests are important sinks for atmospheric carbon, yet C uptake and accumulation rates are highly uncertain, and the mechanisms poorly understood. We evaluated the recovery of C stocks in four pools (aboveground biomass, litter, roots and topsoil) during dry forest regrowth by combining a space for time replacement (that is, a chronosequence) with a repeated measurements approach (that is, a resampling). We fit nonlinear models to chronosequence data to test whether forest age could explain differences in C stocks across sites, and to changes in aboveground biomass calculated from resampling over two 3-year periods, to test the predictive potential of forest age. We combined data from both approaches into structural equation models (SEM) to assess forest age and tree community attributes (diversity and dominance) as drivers of C stocks and changes in aboveground biomass. Forest age explained differences across sites in C stocks for aboveground biomass, litter and live roots, but not for the remaining pools. Observed C stock changes in aboveground biomass were poorly predicted by forest age. SEM revealed that aboveground biomass C was consistently and positively related to forest age and to the community weighted mean of maximum tree height (H max CWM), but not to tree diversity. Observed C stock changes were related only to H max CWM, although not consistently across the two 3-year periods. Our results highlight that the chronosequence approach can yield reasonable insights into long-term C accumulation trends, but erroneous estimates of C change over specific time periods. They also show that, in addition to age, dominance by tall statured species, but not tree species diversity, plays a significant role in C accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Achard F, Beuchle R, Mayaux P, Stibig H-J et al. 2014. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob Change Biol 20:2540–54.

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Wang MMH, McGarvey JC, LeBauer DS. 2016. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob Change Biol 22:1690–709.

    Article  Google Scholar 

  • Aryal DR, De Jong BHJ, Ochoa-Gaona S, Mendoza-Vega J, Esparza-Olguin L. 2015. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosyst 103:45–60.

    Article  CAS  Google Scholar 

  • Ayala-Orozco B, Gavito ME, Mora F, Siddique I, et al. 2017. Resilience of soil properties to land-use change in a tropical dry forest ecosystem. Land Degrad Dev. doi:10.1002/ldr.2686.

    Google Scholar 

  • Barajas-Morales J. 1985. Wood structural differences between trees of two tropical forests in Mexico. IAWA Bull 6:355–64.

    Article  Google Scholar 

  • Barajas-Morales J. 1987. Wood specific gravity in species from two tropical forests in Mexico. IAWA Bull 8:143–8.

    Article  Google Scholar 

  • Becknell JM, Kissing L, Powers JS. 2012. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For Ecol Manag 276:88–95.

    Article  Google Scholar 

  • Becknell JM, Powers JS. 2014. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can J For Res 44:604–13.

    Article  CAS  Google Scholar 

  • Bhaskar R, Dawson TE, Balvanera P. 2014a. Community assembly and functional diversity along succession post-management. Funct Ecol 28:1256–65.

    Article  Google Scholar 

  • Bhaskar R, Dawson TE, Balvanera P. 2014b. Data from: community assembly and functional diversity along succession post-management. Dryad Digit Repos. doi:10.5061/dryad6p9v5.

    Google Scholar 

  • Bojórquez JA. 2014. Generación de modelos alométricos para cuantificar la biomasa en pie de bosques tropicales secundarios en la región de Chamela, Jalisco, México. M.Sc. Dissertation. Universidad Nacional Autónoma de México.

  • Bonner MTL, Schmidt S, Shoo LP. 2013. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For Ecol Manage 291:73–86.

    Article  Google Scholar 

  • Canty A, Ripley B. 2016. boot: Bootstrap R (S-Plus) functions. R package version 1.3-18.

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE et al. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98:572–92.

    Article  PubMed  Google Scholar 

  • Castillo A, Magaña A, Pujadas A, Martínez L, Godínez C. 2005. Understanding the interaction of rural people with ecosystems: a case study in a tropical dry forest of Mexico. Ecosystems 8:630–43.

    Article  Google Scholar 

  • Chapin FSIII, Matson PA, Vitousek PM. 2011. Principles of terrestrial ecosystem ecology. 2nd edn. New York: Springer.

    Book  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA et al. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–67.

    Article  PubMed  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–90.

    Article  Google Scholar 

  • Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F et al. 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2:e1501639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP et al. 2013. Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–24.

    Article  Google Scholar 

  • Conti G, Díaz S. 2013. Plant functional diversity and carbon storage—an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28.

    Article  CAS  Google Scholar 

  • Costa TL, Sampaio EVSB, Sales MF, Accioly LJO et al. 2014. Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil. Plant Soil 378:113–23.

    Article  CAS  Google Scholar 

  • Cotler H, Durán E, Siebe C. 2002. Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio. In: Noguera FA, Vega JH, García-Aldrete AN, Quesada M, Eds. Historia Natural de Chamela. México: Instituto de Biología, Universidad Nacional Autónoma de México. p 17–79.

    Google Scholar 

  • Don A, Schumacher J, Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–70.

    Article  Google Scholar 

  • Feldpausch TR, Prates-Clark CDC, Fernandes ECM, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in central Amazonia. Glob Change Biol 13:967–79.

    Article  Google Scholar 

  • Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N et al. 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191–201.

    Article  Google Scholar 

  • Grace J, Mitchard E, Gloor E. 2014. Perturbations in the carbon budget of the tropics. Glob Change Biol 20:3238–55.

    Article  Google Scholar 

  • Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM et al. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3:art73.

    Article  Google Scholar 

  • Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–10.

    Article  Google Scholar 

  • Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F. 2010. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26:355–70.

    Article  Google Scholar 

  • Houghton RA. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55B:378–90.

    CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change. 2006. Agriculture, forestry, and other land use. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, Eds. 2006 IPCC guidelines for national greenhouse gas inventories. Hayama: Institute for Global Environmental Strategies.

    Google Scholar 

  • Jaramillo VJ, Kauffman JB, Rentería-Rodríguez L, Cummings DL, Ellingson LJ. 2003. Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6:609–29.

    Article  CAS  Google Scholar 

  • Kauffman JB, Hughes RF, Heider C. 2009. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics. Ecol Appl 19:1211–22.

    Article  PubMed  Google Scholar 

  • Kenzo T, Ichie T, Hattori D, Kendawang JJ et al. 2010. Changes in above- and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. For Ecol Manag 260:875–82.

    Article  Google Scholar 

  • Kissing LB, Powers JS. 2010. Coarse woody debris stocks as a function of forest type and stand age in Costa Rican tropical dry forest: long-lasting legacies of previous land use. J Trop Ecol 26:467–71.

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.

  • Lasky JR, Uriarte M, Boukili VK, Erickson DL et al. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17:1158–67.

    Article  PubMed  Google Scholar 

  • Lawrence D. 2005. Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica 37:561–70.

    Article  Google Scholar 

  • Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA. 2008. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–31.

    Article  Google Scholar 

  • Lebrija-Trejos E, Meave JA, Poorter L, Pérez-García EA, Bongers F. 2010. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspect Plant Ecol Evol Syst 12:267–75.

    Article  Google Scholar 

  • Letcher SG, Lasky JR, Chazdon RL, Norden N et al. 2015. Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. J Ecol 103:1276–90.

    Article  Google Scholar 

  • Lévesque M, Mclaren KP, Mcdonald MA. 2011. Recovery and dynamics of a primary tropical dry forest in Jamaica, 10 years after human disturbance. For Ecol Manag 262:817–26.

    Article  Google Scholar 

  • Lin D, Anderson-Teixeira KJ, Lai J, Mi X et al. 2016. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409:435–46.

    Article  CAS  Google Scholar 

  • Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M et al. 2013. Succesional changes in functional composition contrast for dry and wet tropical forest. Ecology 94:1211–6.

    Article  PubMed  Google Scholar 

  • Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F. 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96:1242–52.

    Article  PubMed  Google Scholar 

  • Malhi Y. 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75.

    Article  CAS  Google Scholar 

  • Marchetti GM, Drton M, Sadeghi K. 2015. ggm: functions for graphical Markov models. R package version 2.3. https://CRAN.R-project.org/package=ggm.

  • Marin-Spiotta E, Sharma S. 2013. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Ecol Biogeogr 22:105–17.

    Article  Google Scholar 

  • Martin PA, Newton AC, Bullock JM. 2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc B 280:20132236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Yrízar A, Sarukhán J, Pérez-Jiménez A, Rincón E et al. 1992. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México. J Trop Ecol 8:87.

    Article  Google Scholar 

  • Maza-Villalobos S, Poorter L, Martínez-Ramos M. 2013. Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. Lamb EG, editor. PLoS ONE 8:e82040.

    Article  PubMed  PubMed Central  Google Scholar 

  • McNicol IM, Berry NJ, Bruun TB et al. 2015. Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos. For Ecol Manag 357:104–16.

    Article  Google Scholar 

  • Meister K, Ashton MS, Craven D, Griscom H. 2012. Carbon dynamics of tropical forests. In: Ashton MS, Tyrrell ML, Spalding D, Gentry B, Eds. Managing forest carbon in a changing climate. New York: Springer. p 51–75.

    Chapter  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C et al. 2006. A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505.

    Article  Google Scholar 

  • Miller PM, Kauffman JB. 1998a. Effects of slash and burn agriculture on species abundance and composition of a tropical deciduous forest. For Ecol Manag 103:191–201.

    Article  Google Scholar 

  • Miller PM, Kauffman JB. 1998b. Seedling and sprout response to slash-and-burn agriculture in a tropical deciduous forest. Biotropica 30:538–46.

    Article  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.

    Article  Google Scholar 

  • Mora F, Martínez-Ramos M, Ibarra-Manríquez G, Pérez-Jiménez A et al. 2015. Testing chronosequences through dynamic approaches: time and site effects on tropical dry forest succession. Biotropica 47:38–48.

    Article  Google Scholar 

  • Moura PM, Althoff TD, Oliveira RA, Souto JS et al. 2016. Carbon and nutrient fluxes through litterfall at four succession stages of Caatinga dry forest in Northeastern Brazil. Nutr Cycl Agroecosyst 105:25–38.

    Article  CAS  Google Scholar 

  • Murty D, Kirschbaum MUF, Mcmurtrie RE, Mcgilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–23.

    Article  Google Scholar 

  • Niklas KJ. 2004. Plant allometry: is there a grand unifying theory? Biol Rev Camb Philos Soc 79:871–89.

    Article  PubMed  Google Scholar 

  • Noguera FA, Vega Rivera JH, García Aldrete AN. 2002. Introducción. In: Noguera FA, Vega Rivera JH, García Aldrete AN, Quesada Avendaño M, Eds. Historia Natural de Chamela. México: Instituto de Biología, Universidad Nacional Autónoma de México. p xv.

    Google Scholar 

  • Norden N, Angarita HA, Bongers F, Martínez-Ramos M et al. 2015. Successional dynamics in neotropical forests are as uncertain as they are predictable. Proc Natl Acad Sci 112:8013–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, et al. 2016. vegan: community ecology package. R package version 2.3-0. https://CRAN.R-project.org/package=vegan.

  • Orihuela-Belmonte DE, de Jong BHJ, Mendoza-Vega J, Van der Wal J et al. 2013. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agr Ecosyst Environ 171:72–84.

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.

    Article  CAS  PubMed  Google Scholar 

  • Pineda-García F, Paz H, Tinoco-Ojanguren C. 2011. Morphological and physiological differentiation of seedlings between dry and wet habitats in a tropical dry forest. Plant Cell Environ 34:1536–47.

    Article  PubMed  Google Scholar 

  • Pineda-García F, Paz H, Meinzer FC, Angeles G. 2016. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol 36:208–17.

    PubMed  Google Scholar 

  • Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-plus. New York: Springer.

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team. 2016. nlme: linear and nonlinear mixed effects models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme.

  • Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM et al. 2016. Biomass resilience of neotropical secondary forests. Nature 530:211–14.

    Article  CAS  PubMed  Google Scholar 

  • Powers JJS, Peréz-Aviles D. 2012. Edaphic factors are a more important control on surface fine roots than stand age in secondary tropical dry forests. Biotropica 45:1–9.

    Article  Google Scholar 

  • Prado-Junior JA, Schiavini I, Vale VS, Arantes CS et al. 2016. Conservative species drive biomass productivity in tropical dry forests. J Ecol 104:817–27.

    Article  Google Scholar 

  • Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–77.

    Article  Google Scholar 

  • R Development Core Team. 2016. R: a language and environment for statistical computing, version 3.3.1. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.

  • Romero-Duque LP, Jaramillo VJ, Pérez-Jiménez A. 2007. Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. For Ecol Manag 253:38–47.

    Article  Google Scholar 

  • Rozendaal DMA, Chazdon RL, Arreola-Villa F, Balvanera P et al. 2017. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests. Ecosystems 20:340–53.

    Article  Google Scholar 

  • Rufin P, Müller H, Pflugmacher D, Hostert P. 2015. Land use intensity trajectories on Amazonian pastures derived from Landsat time series. Int J Appl Earth Obs Geoinf 41:1–10.

    Article  Google Scholar 

  • Sánchez-Azofeifa GA, Quesada M, Cuevas-Reyes P, Castillo A, Sánchez-Montoya G. 2009. Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. For Ecol Manag 258:907–12.

    Article  Google Scholar 

  • Sato T, Saito M, Ramírez D, Pérez de Molas LF et al. 2015. Development of allometric equations for tree biomass in forest ecosystems in paraguay. Jpn Agric Res Q 49:281–91.

    Article  CAS  Google Scholar 

  • Saynes V, Hidalgo C, Etchevers J, Campo J. 2005. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl Soil Ecol 29:282–9.

    Article  Google Scholar 

  • Shipley B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–8.

    Article  PubMed  Google Scholar 

  • Sierra CA, Del Valle JI, Restrepo HI. 2012. Total carbon accumulation in a tropical forest landscape. Carbon Balance Manag 7:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver W, Miya R. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–19.

    Article  PubMed  Google Scholar 

  • Slik JWF, Paoli G, McGuire K, Amaral I et al. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–71.

    Article  Google Scholar 

  • Sloan S, Goosem M, Laurance SG. 2016. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc Ecol 31:601–18.

    Article  Google Scholar 

  • Tello C. 2012. La transformación del paisaje. Colonización, desarrollo y conservación de la Costalegre de Jalisco, en la región de Cuixmala y Careyes (1943–1993). México (DF): Universidad Nacional Autónoma de México y El Colegio de Jalisco.

    Google Scholar 

  • Trilleras JM. 2008. Análisis socio-ecológico del manejo, degradación y restauración del bosque tropical seco de la región de Chamela-Cuixmala, México. M.Sc. Dissertation. Universidad Nacional Autónoma de México.

  • Trilleras JM, Jaramillo VJ, Vega EV, Balvanera P. 2015. Effects of livestock management on the supply of ecosystem services in pastures in a tropical dry region of western Mexico. Agr Ecosyst Environ 211:133–44.

    Article  Google Scholar 

  • Vargas R, Allen MF, Allen EB. 2008. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Change Biol 14:109–24.

    Google Scholar 

  • van Vliet N, Mertz O, Heinimann A, Langanke T et al. 2012. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Glob Environ Change 22:418–29.

    Article  Google Scholar 

  • Wandelli EV, Fearnside PM. 2015. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. For Ecol Manag 347:140–8.

    Article  Google Scholar 

  • Wright S. 2010. The future of tropical forests. Ann N Y Acad Sci 1195:1–27.

    Article  PubMed  Google Scholar 

  • Yang Y, Luo Y, Finzi AC. 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol 190:977–89.

    Article  CAS  PubMed  Google Scholar 

  • Zarin DJ, Davidson EA, Brondizio E, Vieira ICG et al. 2005. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front Ecol Environ 3:365–9.

    Article  Google Scholar 

  • Zeri M, Sá LDA, Manzi AO, Araú AC et al. 2014. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia. PLoS ONE 9:e88130.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Felipe Arreola for field assistance, and to Leonor Solís from IIES-UNAM for her help in editing figures. The Chamela Biological Station (UNAM) provided facilities and support for the realization of this study. This research was supported by SEMARNAT-CONACYT-0597 and SEP-CONACyT CB-2005-01-51043 Grants to MMR, PAPIIT-UNAM IN290722, PAPIIT-UNAM IN211114 and SEP-CONACYT 2009-129740 Grants to PB, NSF IRFP OISE-0754502 awarded to RB, DGAPA-UNAM postdoctoral fellowship to IS, and by a Ph.D. scholarship from the Mexican National Science and Technology Council (CONACyT) to FM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Mora.

Additional information

Author contributions

FM, VJJ and PB conceived the study. FM, RB, MG and IS performed field work. FM and JEKB analyzed data. FM, VJJ and PB wrote the paper, all other authors commented on the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 6288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, F., Jaramillo, V.J., Bhaskar, R. et al. Carbon Accumulation in Neotropical Dry Secondary Forests: The Roles of Forest Age and Tree Dominance and Diversity. Ecosystems 21, 536–550 (2018). https://doi.org/10.1007/s10021-017-0168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0168-2

Keywords

Navigation