Skip to main content

The Impacts of Above- and Belowground Plant Input on Soil Microbiota: Invasive Spartina alterniflora Versus Native Phragmites australis

Abstract

Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Albers D, Schaefer M, Scheu S. 2006. Incorporation of plant carbon into the soil animal food web of an arable system. Ecology 87:235–45.

    Article  PubMed  Google Scholar 

  • Andrássy I. 1956. Die rauminhalst and gewichtsbestimmung der fadenwurmer, (Nematoden). Acta Zool Acad Sci Hung 2:1–15.

    Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. 2005. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–41.

    Article  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA. 2010. Aboveground–belowground linkages, biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution. New York: Oxford University Press.

    Google Scholar 

  • Bastow JL, Preisser EL, Strong DR. 2008. Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biol Invasions 10:191–9.

    Article  Google Scholar 

  • Bird JA, Torn MS. 2006. Fine roots vs. needles: a comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry 79:361–82.

    Article  Google Scholar 

  • Bongers T. 1990. The maturity index—an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19.

    Article  PubMed  Google Scholar 

  • Bossio DA, Scow KM. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–78.

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Zhang Q, Coleman DC. 1996. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–8.

    Article  CAS  Google Scholar 

  • Chen H, Li B, Fang C, Chen J, Wu J. 2007a. Exotic plant influences soil nematode communities through litter input. Soil Biol Biochem 39:1782–93.

    Article  CAS  Google Scholar 

  • Chen H, Li B, Hu J, Chen J, Wu J. 2007b. Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze Estuary. Mar Ecol Prog Ser 336:99–110.

    Article  Google Scholar 

  • Chen Z, Guo L, Jin B, Wu J, Zheng G. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuar Coast Shelf Sci 82:265–72.

    Article  Google Scholar 

  • Chen Z, Li B, Chen J. 2004. Ecological consequences and management of Spartina spp. invasions in coastal ecosystems. Biodivers Sci 12:280–9.

    Google Scholar 

  • Clarke KR, Warwick RM. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.

    Google Scholar 

  • Dawson W, Schrama M. 2016. Identifying the role of soil microbes in plant invasions. J Ecol 104:1211–18.

    Article  Google Scholar 

  • De Deyn GB, Quirk H, Ostle N, Bardgett RD. 2011. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8:1131–9.

    Article  Google Scholar 

  • Ehrenfeld JG. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–23.

    Article  CAS  Google Scholar 

  • Ehrenfeld JG. 2010. Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80.

    Article  Google Scholar 

  • Eisenhauer N, Reich PB. 2012. Above- and below-ground plant inputs both fuel soil food webs. Soil Biol Biochem 45:156–60.

    Article  CAS  Google Scholar 

  • Eissfeller V, Beyer F, Valtanen K, Hertel D, Maraun M, Polle A, Scheu S. 2013. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biol Biochem 62:76–81.

    Article  CAS  Google Scholar 

  • Ferris H. 2010. Form and function: metabolic footprints of nematodes in the soil food web. Eur J Soil Biol 46:97–104.

    Article  Google Scholar 

  • Ferris H, Sánchez-Moreno S, Brennan EB. 2012. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Appl Soil Ecol 61:16–25.

    Article  Google Scholar 

  • Ferris H. 2013. Nematode body mass, biomass and metabolic footprints. Nemaplex (Nematode-Plant Expert Information System), University of California. http://plpnemweb.ucdavis.edu/nemaplex/Ecology/nematode_weights.htm. Accessed 20 Dec 2013

  • Freschet GT, Cornwell WK, Wardle DA et al. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–52.

    Article  CAS  Google Scholar 

  • Frostegård A, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65.

    Article  Google Scholar 

  • Frostegård A, Tunlid A, Bååth E. 2011. Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–5.

    Article  Google Scholar 

  • Griffiths BS, Boag B, Neilson R, Palmer L. 1990. The use of colloidal silica to extract nematodes from small samples of soil or sediment. Nematologica 36:465–73.

    Article  Google Scholar 

  • Gratton C, Denno RF. 2005. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restor Ecol 13:358–72.

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N et al. 2001. Large-scale forest girdling show that current photosynthesis drives soil respiration. Nature 411:789–92.

    Article  PubMed  Google Scholar 

  • Hu N, Li H, Tang Z et al. 2016. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil. Sci Rep 6:28138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodson AK, Ferris H, Hollander AD, Jackson LE. 2014. Nematode food webs associated with native perennial plant species and soil nutrient pools in California riparian oak woodlands. Geoderma 228–229:182–91.

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemeke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–10.

    Article  Google Scholar 

  • Hansson K, Kleja DB, Kalbitz K, Larsson H. 2010. Amounts of carbon mineralized and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biol Biochem 42:178–85.

    Article  CAS  Google Scholar 

  • Keith AM, Brooker RW, Osler GHR, Chapman SJ, Burslem DFRP, van der Wal R. 2009. Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biol Biochem 41:1060–5.

    Article  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–66.

    Article  Google Scholar 

  • Li B, Liao C, Zhang X et al. 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–20.

    Article  CAS  Google Scholar 

  • Liao C, Luo Y, Jiang L et al. 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–61.

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B. 2008. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156:589–600.

    Article  PubMed  Google Scholar 

  • McCary MA, Mores R, Farfan MA, Wise DH. 2016. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol Lett 19:328–35.

    Article  PubMed  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC et al. 2004. Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600.

    Article  Google Scholar 

  • Moore JC, McCann K, de Ruiter PC. 2005. Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia 49:499–510.

    Article  CAS  Google Scholar 

  • Morriën E, Duyts H, van der Putten WH. 2012. Effects of native and exotic range-expanding plant species on taxonomic and functional composition of nematodes in the soil food web. Oikos 121:181–90.

    Article  Google Scholar 

  • Osler GHR, Korycinska A, Cole L. 2006. Differences in litter mass change mite assemblage structure on a deciduous forest floor. Ecography 29:811–18.

    Article  Google Scholar 

  • Pollierer MM, Langel R, Korner C, Maraun M, Scheu S. 2007. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–36.

    Article  PubMed  Google Scholar 

  • Pollierer MM, Dyckmans J, Scheu S, Haubert D. 2012. Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol 26:978–90.

    Article  Google Scholar 

  • Qing H, Yao Y, Xiao Y, Hu F, Sun Y, Zhou C, An S. 2011. Invasive and native tall forms of Spartina alterniflora respond differently to nitrogen availability. Acta Oecol 37:23–30.

    Article  Google Scholar 

  • Ramsey PW, Rillig MC, Feris KP, Holben WE, Gannon JE. 2006. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia 50:275–80.

    Article  CAS  Google Scholar 

  • Ravit B, Ehrenfeld JG, Haggblom MM. 2003. A comparison of sediment microbial communities associated with Phragmites australis and Spartina altemiflora in two Brackish wetlands of New Jersey. Estuaries 26:465–74.

    Article  Google Scholar 

  • Reinhart KO, Callaway RM. 2006. Soil biota and invasive plants. New Phytol 170:445–57.

    Article  PubMed  Google Scholar 

  • Reinhart KO, VandeVoort R. 2006. Effect of native and exotic leaf litter on macroinvertebrate communities and decomposition in a western Montana stream. Divers Distrib 12:776–81.

    Article  Google Scholar 

  • Ritz K, Trudgill DL. 1999. Utility of nematode community analysis as an integrated measure of the functional state of soils: perspectives and challenges. Plant Soil 212:1–11.

    Article  CAS  Google Scholar 

  • Ruf A, Kuzyakov Y, Lopatovskaya O. 2006. Carbon fluxes in soil food webs of increasing complexity revealed by 14C labelling and 13C natural abundance. Soil Biol Biochem 38:2390–400.

    Article  CAS  Google Scholar 

  • Sauvadet M, Chauvat M, Cluzeau D, Maron P-A, Villenave C, Bertrand I. 2016. The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biol Biochem 95:262–74.

    Article  CAS  Google Scholar 

  • Scheu S. 2002. The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20.

    Article  Google Scholar 

  • Steffens C, Helfrich M, Joergensen RG, Eissfeller V, Flessa H. 2015. Translocation of 13C-labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) during decomposition - A laboratory incubation experiment. Soil Biol Biochem 83:125–37.

    Article  CAS  Google Scholar 

  • van der Putten WH, Yeats GW, Duyts H, Reis CS, Karssen G. 2005. Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges. Biol Invasions 7:733–46.

    Article  Google Scholar 

  • Wang M, Chen J-K, Li B. 2007. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA. Pedosphere 17:545–56.

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH. 2004. Ecological linkages between above and belowground. Science 304:1629–33.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe BE, Klironomos JN. 2005. Breaking new ground: soil communities and exotic plant invasions. Bioscience 55:477–87.

    Article  Google Scholar 

  • Yeates GW. 1999. Effects of plant on nematode community structure. Annu Rev Phytopathol 37:127–49.

    Article  CAS  PubMed  Google Scholar 

  • Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. 1993. Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Guan P, Wang Y et al. 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol Biochem 80:118–26.

    Article  CAS  Google Scholar 

  • Zhao H, Huang G, Ma J, Li Y, Tang L. 2014. Decomposition of aboveground and root litter for three desert herbs: mass loss and dynamics of mineral nutrients. Biol Fertil Soils 50:745–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (Grant No. 41371258), National Basic Research Program of China (Grant No. 2013CB430404) and Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China. We are grateful to Zaichao Yang, Jun Yan, Youzheng Zhang and Hequn Liu for their help in field sampling. We also thank Dr. Shuangshuang Liu for her constructive suggestions to our manuscript.

Funding

This study was funded by National Natural Science Foundation of China (Grant No. 41371258), National Basic Research Program of China (Grant No. 2013CB430404) and Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author Contributions PZ and JHW conceived and designed the study. PZ conducted field research, lab measurements and statistical analyses. PZ, JHW, DN, BL wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Neher, D.A., Li, B. et al. The Impacts of Above- and Belowground Plant Input on Soil Microbiota: Invasive Spartina alterniflora Versus Native Phragmites australis . Ecosystems 21, 469–481 (2018). https://doi.org/10.1007/s10021-017-0162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0162-8

Keywords