Aridity Decouples C:N:P Stoichiometry Across Multiple Trophic Levels in Terrestrial Ecosystems

Abstract

Increases in aridity forecasted by the end of this century will decouple the cycles of soil carbon (C), nitrogen (N) and phosphorus (P) in drylands—the largest terrestrial biome on Earth. Little is known, however, about how changes in aridity simultaneously affect the C:N:P stoichiometry of organisms across multiple trophic levels. It is imperative that we understand how aridity affects ecological stoichiometry so that we can develop strategies to mitigate any effects of changing climates. We characterized the C, N, P concentration and stoichiometry of soils, autotrophs (trees, N-fixing shrubs, grasses and mosses) and heterotrophs (microbes and ants) across a wide aridity gradient in Australia. Our results suggest that increases in aridity by the end of this century may alter the C:N:P stoichiometry of heterotrophs (ants and microbes), non-woody plants and in soil, but will not affect that one from woody plants. In particular, increases in aridity were positively related to C:P and N:P ratios in microbes and ants, negatively related to concentration of C, and the C:N and C:P ratios in mosses and/or short grasses, and not related to the C:N:P stoichiometry of either shrubs or trees. Because of the predominant role of C:N:P stoichiometry in driving nutrient cycling, our findings provide useful contextual information to determine ecological responses in a drier world.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3

References

  1. Anderson JM, Ingram JSI. 1993. Tropical soil biology and fertility. A handbook of methods. Wallingford: CABI.

    Google Scholar 

  2. Brookshire ENJ, Weaver T. 2016. Long-term decline in grassland productivity driven by increasing dryness. Nat Commun 6:7148.

    Article  Google Scholar 

  3. Carnicer J, Sardans J, Stefanescu C, Ubach A, Bartrons M, Asensio D, Peñuelas J. 2015. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C–N–P imbalances. J Plant Physiol 172:82–91.

    CAS  Article  PubMed  Google Scholar 

  4. Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF. 2012. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen concentration. Science 335:467–9.

    CAS  Article  PubMed  Google Scholar 

  5. Cease AJ, Elser JJ. 2013. Biological stoichiometry. nature education knowledge 4:15.

    Google Scholar 

  6. Chapin FSIII. 1980. The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–60.

    CAS  Article  Google Scholar 

  7. Clarke KR. 1993. Non-parametric multivariate analysis of changes in community structure. Austral J Ecol 18:117–43.

    Article  Google Scholar 

  8. Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 504:667–72.

    Google Scholar 

  10. Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Singh BK. 2016a. Microsite differentiation drives the abundance of soil ammonia oxidizing bacteria along aridity gradients. Front Microbiol 7:505.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Delgado-Baquerizo M, Reich PB, García-Palacios P, Milla R. 2016b. Biogeographic bases for a shift in crop C:N:P stoichiometries during domestication. Ecol Lett 19:564–75.

    Article  PubMed  Google Scholar 

  12. Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC. 2012. Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Oecologia 170:799–808.

    Article  PubMed  Google Scholar 

  13. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB et al. 2000. Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–50.

    Article  Google Scholar 

  14. Evans RD, Koyama A, Sonderegger DL, Charlet TN, Newingham BA, Fenstermaker LF, Harlow B, Jin VL, Ogle K, Smith SD, Nowak RS. 2014. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat Clim Change 4:394–7.

    CAS  Article  Google Scholar 

  15. Feng S, Fu Q. 2013. Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–94.

    CAS  Article  Google Scholar 

  16. Frenette-Dussault C, Shipley B, Hingrat Y. 2013. Linking plant and insect traits to understand multitrophic community structure in arid steppes. Funct Ecol 27:786–92.

    Article  Google Scholar 

  17. García-Palacios P, Maestre FT, Kattge J, Wall DH. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–53.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gibbs AG, Chippindale AK, Rose MR. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200:1821–32.

    CAS  PubMed  Google Scholar 

  19. He M, Zhang K, Tan H, Hu R, Su J, Wang J, Huang L, Zhang Y, Li X. 2015. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecol Evol 5:1494–503.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat Clim Change 6:166–71.

    Article  Google Scholar 

  21. Jiao F, Shi X-R, Han F-P, Yuan Z-Y. 2016. Increasing aridity, temperature and soil pH induce soil C–N–P imbalance in grasslands. Sci Rep 6:19601.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  22. Jones DL, Willett VB. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen DON and dissolved organic carbon DOC in soil. Soil Biol Biochem 38:991–9.

    CAS  Article  Google Scholar 

  23. Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA 112:15684–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Mazzacavallo MG, Kulmatiski A. 2015. Modelling water uptake provides a new perspective on grass and tree coexistence. PLoS ONE 10:e0144300.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nakagawa S, Cuthill IC. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605.

    Article  PubMed  Google Scholar 

  26. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P. 1998. Boreal forest plants take up organic nitrogen. Nature 392:914–16.

    Article  Google Scholar 

  27. Olsen S, Cole C, Watanabe F, Dean L. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington: USDA Circular Nr 939, US Government Printing Office.

    Google Scholar 

  28. Pan Z, Pitt WG, Zhang Y, Wu N, Tao Y, Truscott TT. 2016. The upside-down water collection system of Syntrichia caninervis. Nat Plants 2:16076.

    Article  PubMed  Google Scholar 

  29. Peñuelas J, Sardans J. 2009. Elementary factors. Nature 460:803–4.

    Article  PubMed  Google Scholar 

  30. Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth Sci Rev 161:259–78.

    Article  Google Scholar 

  31. Rabbi SM, Tighe M, Delgado-Baquerizo M, Cowie A, Robertson F, Dalal R, Page K, Crawford D, Wilson BR, Schwenke G, Mcleod M, Badgery W, Dang YP, Bell M, O’Leary G, de Liu, L, Baldock J. 2015. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci Rep 5:17866.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  32. Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301.

    Article  Google Scholar 

  33. Rosenberg, Adams DC, Gurevitch J. 2000. MetaWin 2.0: statistical software for meta-analysis. Sunderland: Sinauer Assoc.

    Google Scholar 

  34. Sardans J, Rivas-Ubach A, Peñuelas J. 2012. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39.

    Article  Google Scholar 

  35. Shewmaker GE, Mayland HF, Rosenau RC, Asay KH. 1989. Silicon in C-3 grasses: effects on forage quality and sheep preference. J Range Manag 42:122–7.

    Article  Google Scholar 

  36. Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–94.

    Article  PubMed  Google Scholar 

  37. Tiessen H, Moir JO. 1993. Characterization of available P by sequential fractionation. Soil sampling and methods of analysis. Boca Raton: Lewis Publishers.

    Google Scholar 

  38. United Nations Environment Programme. 1992. World atlas of desertification UNEP. London: Edward Arnold.

    Google Scholar 

  39. Voroney RP, Brookes PC, Beyaert RP. 2006. Soil microbial biomass C, N, P, and S. In: Carter MR, Gregorich EG, Eds. Soil sampling and methods of analysis. Boca Raton: Lewis.

    Google Scholar 

  40. Wang C, Wang X, Liu D, Wu H, Lü X, Fang Y, Cheng W, Luo W, Jiang P, Shi J, Yin H, Zhou J, Han X, Bai E. 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat Commun 5:4799.

    CAS  Article  PubMed  Google Scholar 

  41. Walter H. 1939. Grasland, Savanne und Busch der arideren Teile Afrikas in ihrer ökologischen Bedingtheit. Jahrb Wiss Bot 87:750–860.

    Google Scholar 

  42. Ward D, Wiegand K, Getzin S. 2013. Walter’s two-layer hypothesis revisited: back to the roots!. Oecologia 172:617–30.

    Article  PubMed  Google Scholar 

  43. Weldon CW, Boardman L, Marlin D, Terblanche JS. 2016. Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata Wiedemann Diptera: Tephritidae relative to its less widely distributed congeners. Front Zool 13:15.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Whitford WG. 1978. Foraging in seed-harvester ants Pogonomyrmex spp. Ecology 59:185–9.

    Article  Google Scholar 

  45. Yuan ZY, Chen HYH. 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Change 5:465–9.

    CAS  Article  Google Scholar 

  46. Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J et al. 2015. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–55.

    Article  Google Scholar 

  47. Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV. 2008. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80.

    Article  Google Scholar 

  48. Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix- Beneyto J. 2006. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biol Biochem 38:2125–34.

    CAS  Article  Google Scholar 

  49. Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mataix-Beneyto J. 2009. Storage effects on biochemical properties of air-dried soil samples from southeastern Spain. Arid Land Restaur Manag 23:213–22.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Australian Research Council (Project DP13010484; DP170104634), by GRDC (UWS00008) and by the European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 242658 (BIOCOM). M.D-B. also acknowledges support from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016 under REA Grant Agreement No. 702057. DJE was supported by the Hermon Slade Foundation. FTM acknowledges support from the European Research Council (BIODESERT Project, ERC Grant Agreement No. 647038) and by the Spanish Ministry of Economy and Competitiveness (BIOMOD Project, CGL2013-44661-R).

Data Accessibility

Data associated with this paper have been deposited in figshare: https://figshare.com/s/d736cb67a3397d3c7f1c (10.6084/m9.figshare.5056486).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Delgado-Baquerizo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4284 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delgado-Baquerizo, M., Eldridge, D.J., Maestre, F.T. et al. Aridity Decouples C:N:P Stoichiometry Across Multiple Trophic Levels in Terrestrial Ecosystems. Ecosystems 21, 459–468 (2018). https://doi.org/10.1007/s10021-017-0161-9

Download citation

Keywords

  • carbon
  • nitrogen
  • phosphorus
  • heterotrophs
  • autotrophs
  • soil microbes
  • ants