Advertisement

Ecosystems

, Volume 21, Issue 2, pp 203–215 | Cite as

Environmental Controls of Cryptogam Composition and Diversity in Anthropogenic and Natural Peatland Ecosystems of Chilean Patagonia

  • Carolina A. LeónEmail author
  • Gisela Oliván Martínez
  • Aurora Gaxiola
Article

Abstract

Peatlands exhibit highly characteristic ecological traits and are unique complex ecosystems. Nevertheless, knowledge about southern South American peatlands is very limited. In this study, we analyzed species composition of bryophytes and lichens of Southern Hemisphere peatlands, specifically from eight peatlands of Isla Grande de Chiloé (Chiloé Island) in southern Chile (42°–43°S and 75°–73°W). Two kinds of Sphagnum peatlands were studied: natural and anthropogenic peatlands. Our results indicate the existence of clear environmental gradients affecting the structure of bryo-lichenic communities in the Sphagnum peatlands of Chiloé. Canonical correspondence analysis suggests that variation in bryophyte and lichen species composition mainly follows ombrotrophic–minerotrophic and lithotrophic-thalassotrophic gradients. Surface-water chemistry is the most significant factor accounting for changes in floristic composition among our study sites. In contrast to our expectations, bog origin (natural or anthropic) was not the most significant factor accounting for changes in floristic composition among peatlands. Other elements, such as the water source supplying peatlands or the influence of sea spray, were more relevant in the bryo-lichenic flora species occurrence in the peatlands of Chiloé. We also observed clear differences in ecological niches among species in general additive model response curves. Therefore, our results show that despite the origin, the ecology of peatlands follows common rules with peatlands from the Northern Hemisphere.

Keywords

bogs wetlands southern South America Chiloé CCA and GAM 

Notes

Acknowledgements

This research was supported by grants AECID A/025081/2009, Cooperación al Desarrollo UCM 4138114 and AECID A/030011/2011. We are very grateful to Dr. Alfonso Benítez-Mora for his assistance in the field. We wish to thank the Fundación Senda Darwin, Aserradero A.R.P., Chepu adventures, I. Municipalidad de Dalcahue and CONAF Chiloé for their logistic support during fieldwork. Lic. Elena Araujo for her help with TLC, Dra. Jara Vassallo for her assistance with the data analysis. C. A. León acknowledges the support of the doctoral fellowship provided by CONICYT-Gobierno de Chile. This is a contribution to the Research Program of LTSER-Chile network at Senda Darwin Biological Station, Chiloé, Chile.

Supplementary material

10021_2017_142_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. Albornoz F, Gaxiola A, Seaman BJ, Pugnaire F, Armesto J. 2013. Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecol. 214:765–76.CrossRefGoogle Scholar
  2. Arroyo MT, Pliscoff P, Mihoc M, Arroyo-Kalin M. 2005. The Magallanic moorland. In: Fraser LH, Keddy PA, Eds. The world’s largest wetlands. Ecology and conservation. New York: Cambridge University Press. p 424–45.Google Scholar
  3. Bridgham SD, Updegraff K, Pastor J. 2001. A comparison of nutrient availability indices along an ombrotrophic–minerotrophic gradient in Minnesota wetlands. Soil Sci Soc Am J 65.Google Scholar
  4. Bullock J. 1997. Plants. In: Sutherland WJ, Ed. Ecological census techniques: a handbook. UK: Cambridge University Press. p 111–38.Google Scholar
  5. Carmona MR, Aravena JC, Bustamante-Sanchez MA, Celis-Diez JL, Charrier A, Díaz IA, Díaz-Forestier J, Díaz MF, Gaxiola A, Gutiérrez AG, Hernandez-Pellicer C, Ippi S, Jaña-Prado R, Jara-Arancio P, Jimenez J, Manuschevich D, Necochea P, Nuñez-Avila M, Papic C, Pérez C, Pérez F, Reid S, Rojas L, Salgado B, Smith-Ramírez C, Troncoso A, Vásquez RA, Willson MF, Rozzi R, Armesto JJ. 2010. Estación Biológica Senda Darwin: investigación ecológica de largo plazo en la interfase ciencia-sociedad. Rev Chil de Hist Nat 83:113–42.CrossRefGoogle Scholar
  6. Clymo RS. 1964. The Origin of Acidity in Sphagnum Bogs. The Bryol 67:427–31.CrossRefGoogle Scholar
  7. Comeau PL, Bellamy DJ. 1986. An ecological interpretation of the chemistry of mire waters from selected sites in eastern Canada. Can J Bot 64:2576–81.CrossRefGoogle Scholar
  8. CONAF. 2009. Plan de Acción Provincial Chiloé—Plan de Gestión Territorial. Castro: Oficina Provincial Chiloé - Corporación Nacional Forestal. p 49.Google Scholar
  9. Charman D. 2002. Peatlands and environmental change. New York: Wiley. p 301.Google Scholar
  10. Daniels RE, Eddy A. 1985. Handbook of European sphagna. Great Britain: Institute of Terrestrial Ecology, Natural Environment Research Council. p 262.Google Scholar
  11. di Castri F, Hajek ER. 1976. Bioclimatología de Chile. Santiago: Editorial Universidad Católica de Chile. p 128.Google Scholar
  12. Díaz MF, Larraín J, Zegers G, Tapia C. 2008. Caracterización florística e hidrológica de turberas de la Isla Grande de Chiloé, Chile. Rev Chil de Hist Nat 81:445–68.CrossRefGoogle Scholar
  13. du Rietz GE. 1954. Die Mineralbodenwasserzeigergrenze als grundlage einer natürlichen zweigliederung der nord- und mitteleuropäischen moore. Vegetatio 5:571–85.CrossRefGoogle Scholar
  14. Gaxiola A, McNeill SM, Coomes DA. 2010. What drives retrogressive succession? Plant strategies to tolerate infertile and poorly drained soils. Funct Ecol 24:714–22.CrossRefGoogle Scholar
  15. Gignac LD, Vitt DH. 1990. Habitat limitations of Sphagnum along climatic, chemical, and physical gradients in mires of western Canada. Bryol 93:7–22.CrossRefGoogle Scholar
  16. Gignac LD, Vitt DH, Zoltai SC, Bayley SE. 1991. Bryophyte response surfaces along climatic, chemical and physical gradients in peatlands of western Canada. Nova Hedwig 53:27–71.Google Scholar
  17. Granath G, Strengbom J, Rydin H. 2010. Rapid ecosystem shifts in peatlands: linking plant physiology and succession. Ecology 91:3047–56.CrossRefPubMedGoogle Scholar
  18. Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9.Google Scholar
  19. Hauser A. 1996. Los depósitos de turba en Chile y sus perspectivas de utilización. Rev Geol de Chile 23:217–29.Google Scholar
  20. Hedenäs L. 2003. The European species of the Calliergon-Scorpidium-Drepanocladus complex, including some related or similar species. Meylania 28:1–116.Google Scholar
  21. Heusser CJ. 2003. Preface. In: Heusser CJ, Ed. Developments in Quaternary Sciences—Ice Age Southern Andes A Chronicle of Paleoecological Events. Amsterdam: Elsevier. p 7–8.Google Scholar
  22. Hughes PDM, Barber KE. 2004. Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England. The Holocene 14:65–77.CrossRefGoogle Scholar
  23. Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:373–86.CrossRefGoogle Scholar
  24. Kleinebecker T, Holzel N, Andreas V. 2008. South Patagonian ombrotrophic bog vegetation reflects biogeochemical gradients at the landscape level. J Veg Sci 19:151–60.CrossRefGoogle Scholar
  25. Kleinebecker T, Holzel N, Vogel A. 2007. Gradients of continentality and moisture in South Patagonian ombrotrophic peatland vegetation. Folia Geobot 42:363–82.CrossRefGoogle Scholar
  26. Kleinebecker T, Hölzel N, Vogel A. 2010. Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs. Austral Ecol 35:1–12.CrossRefGoogle Scholar
  27. Lang SI, Cornelissen JHC, Hölzer A, Ter Braak CJF, Ahrens M, Callaghan TV, Aerts R. 2009. Determinants of cryptogam composition and diversity in Sphagnum-dominated peatlands: the importance of temporal, spatial and functional scales. J Ecol 97:299–310.CrossRefGoogle Scholar
  28. León CA, Oliván G. 2014. Recent rates of carbon and nitrogen accumulation in peatlands of Isla Grande de Chiloé-Chile. Rev Chil de Hist Nat 87.Google Scholar
  29. León CA, Oliván G, Larraín J, Vargas R, Fuertes E. 2014. Bryophytes and lichens in peatlands and Tepualia stipularis forest of Isla Grande de Chiloé-Chile. Anales del Jardín Botánico de Madrid 71:e003.CrossRefGoogle Scholar
  30. Lepš J, Šmilauer P. 2003. Multivariate analysis of ecological data using CANOCO. p 283.Google Scholar
  31. Loisel J, Yu Z. 2013. Holocene peatland carbon dynamics in Patagonia. Quat Sci Rev 69:125–41.CrossRefGoogle Scholar
  32. Magurran AE. 2004. Measuring biological diversity. Oxford: Blackwell.Google Scholar
  33. Martínez-Cortizas A, Pontevedra Pombal X, Nóvoa Muñoz JC, Rodríguez Fernández R, López-Sáez JA. 2009. Turberas ácidas de esfagnos. In: Martínez Cortizas A, Ed. Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. p 1–64.Google Scholar
  34. Nicholson BJ, Gignac LD, Bayley SE. 1996. Peatland distibution along a north-south transect in the mackenzie river basin in relation to climatic and environmental gradients. Vegetatio 126:119–33.CrossRefGoogle Scholar
  35. Pérez CA, Armesto JJ, Torrealba C, Carmona MR. 2003. Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Austral Ecol 28:591–600.CrossRefGoogle Scholar
  36. Porter SC. 1981. Pleistocene glaciation in the southern Lake District of Chile. Quat Res 16:263–92.CrossRefGoogle Scholar
  37. R Development Core Team. 2011. R: a language and environment for statistical computing: Vienna, Austriap.Google Scholar
  38. Roulet N, Lafleur P, Richard P, Moore T, Humphreys E, Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411.CrossRefGoogle Scholar
  39. Rydin H. 1986. Competition and niche separation in Sphagnum. Can J Bot 64:1817–24.CrossRefGoogle Scholar
  40. Rydin H. 1993. Mechanism of interactions among Sphagnum species along water level gradients. Adv Bryol 5:153–85.Google Scholar
  41. Rydin H, Jeglum JK. 2006. The Biology of Peatlands. London: Oxford University Press. p 343.CrossRefGoogle Scholar
  42. Sadzawka A, Carrasco MA, Grez R, Mora ML, Flores P, Neaman A. 2006. Métodos de análisis de suelos recomendados para los suelos de Chile. Serie Actas INIA Nº 34. Santiago, Chile: Instituto de Investigaciones Agropecuarias. p 164.Google Scholar
  43. Scarlett P, O’Hare M. 2006. Community structure of in-stream bryophytes in English and Welsh Rivers. Hydrobiologia 553:143–52.CrossRefGoogle Scholar
  44. StatSoft. 2004. STATISTICA for Windows, user’s guide (version 7.0) Tulsa: StatSoft Incp.Google Scholar
  45. ter Braak CJF, Šmilauer P. 2002. CANOCO reference manual and CanoDraw for windows user’s guide: Software for Canonical Community Ordination (version 4.5). Ithaca NY: Microcomputer Power. p 500.Google Scholar
  46. Tuittila ES, Väliranta M, Laine J, Korhola A. 2007. Quantifying patterns and controls of mire vegetation succession in a southern boreal bog in Finland using partial ordinations. J Veg Sci 18:891–902.CrossRefGoogle Scholar
  47. van Breemen N. 1995. How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–5.CrossRefPubMedGoogle Scholar
  48. Vitt DH, Bayley SE, Jin T-L. 1995a. Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Can J Fish Aquat Sci 52:587–606.CrossRefGoogle Scholar
  49. Vitt DH, Belland RJ. 1995. The bryophytes of peatlands in continental western Canada. Fragm Florist et Geobot 40:339–48.Google Scholar
  50. Vitt DH, Chee W-L. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106.CrossRefGoogle Scholar
  51. Vitt DH, Horton DG, Slack NG, Malmer N. 1990. Sphagnum-dominated peatlands of the hyperoceanic British Columbia coast: patterns in surface water chemistry and vegetation. Can J For Res 20:696–711.CrossRefGoogle Scholar
  52. Vitt DH, Li Y, Belland RJ. 1995b. Patterns of bryophyte diversity in peatlands of continental western Canada. Bryologist 98:218–27.CrossRefGoogle Scholar
  53. Vitt DH, Wieder K. 2008. The structure and function of bryophyte-dominated peatlands. Goffinet B, Shaw AJ, editors. Bryophyte Biology: Cambridge University Press. p357–391.Google Scholar
  54. Wheeler BD. 1993. Botanical diversity in British mires. Biodivers Conserv 2:490–512.CrossRefGoogle Scholar
  55. Wheeler BD, Proctor MCF. 2000. Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203.CrossRefGoogle Scholar
  56. Whinam J, Buxton R. 1997. Sphagnum peatlands of Australasia: an assessment of harvesting sustainability. Biol Conserv 82:21–9.CrossRefGoogle Scholar
  57. Whinam J, Hope GS, Clarkson BR, Buxton RP, Alspach PA, Adam P. 2003. Sphagnum in peatlands of Australasia: their distribution, utilization and management. Wetlands Ecol Manage 11:37–49.CrossRefGoogle Scholar
  58. White J, James PW. 1985. A new guide to microchemical techniques for the identification of lichen substances. Bull Brit Lichen Soc 57:1–41.Google Scholar
  59. Yu Z, Beilman DW, Jones MC. 2009. Sensitivity of northern peatland carbon dynamics to holocene climate change. Carbon Cycling in Northern Peatlands: American Geophysical Union. p55-69.Google Scholar
  60. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. 2010. Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402.Google Scholar
  61. Zobel M. 1988. Autogenic succession in boreal mires—a review. Folia Geobotanica et Phytotaxonomica 23:417–45.CrossRefGoogle Scholar
  62. Zuur A, Leno EN, Smith GM. 2007. Analysing ecological data. New York: Springer Press. p 672.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Carolina A. León
    • 1
    Email author
  • Gisela Oliván Martínez
    • 2
  • Aurora Gaxiola
    • 3
    • 4
  1. 1.Centro de Investigación en Recursos Naturales y SustentabilidadUniversidad Bernardo OHigginsSantiagoChile
  2. 2.Departamento de Biología Vegetal I, Facultad de Ciencias BiológicasUniversidad Complutense de MadridMadridSpain
  3. 3.Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Instituto de Ecología y BiodiversidadSantiagoChile

Personalised recommendations