Skip to main content

Advertisement

Log in

Temporal Variability of CO2 and N2O Flux Spatial Patterns at a Mowed and a Grazed Grassland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acosta M, Pavelka M, Montagnani L, Kutsch W, Lindroth A, Juszczak R, Janouš D. 2013. Soil surface CO2 efflux measurements in Norway spruce forests: comparison between four different sites across Europe—from boreal to alpine forest. Geoderma 192:295–303.

    Article  CAS  Google Scholar 

  • Allaire SE, Lange SF, Lafond JA, Pelletier B, Cambouris AN, Dutilleul P. 2012. Multiscale spatial variability of CO2 emissions and correlations with physico-chemical soil properties. Geoderma 170:251–60.

    Article  CAS  Google Scholar 

  • ArchMiller AA, Samuelson LJ, Li Y. 2016. Spatial variability of soil respiration in a 64-year-old longleaf pine forest. Plant Soil. http://link.springer.com/10.1007/s11104-016-2817-1

  • Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S. 2008. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11:1352–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balogh J, Fóti S, Pintér K, Burri S, Eugster W, Papp M, Nagy Z. 2015. Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil 388:157–73.

    Article  CAS  Google Scholar 

  • Barba J, Curiel Yuste J, Martínez-Vilalta J, Lloret F. 2013. Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. For Ecol Manag 306:79–87. doi:10.1016/j.foreco.2013.06.025.

    Article  Google Scholar 

  • Bartholy J, Pongrácz R. 2007. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global Planet Change 57:83–95.

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B. 2014. rgdal: Bindings for the Geospatial Data Abstraction Library.

  • Burzaco JP, Smith DR, Vyn TJ. 2013. Nitrous oxide emissions in Midwest US maize production vary widely with band-injected N fertilizer rates, timing and nitrapyrin presence. Environ Res Lett 8:1–11. http://stacks.iop.org/1748-9326/8/i=3/a=035031?key=crossref.935eda0fb4df97c2964fb502620e5bfe. Last Accessed 23/07/2014

  • Chapuis-Lardy L, Wrage N, Metay AA, Chotte J-L, Bernoux M. 2007. Soils, a sink for N2O? A review. Glob Change Biol 13:1–17.

    Article  Google Scholar 

  • Clemens J, Schillinger M, Goldbach H, Huwe B. 1999. Spatial variability of N2O emissions and soil parameters of an arable silt loam–a field study. Biol Fert Soils 28:403–6. http://link.springer.com/article/10.1007/s003740050512. Last Accessed 30/01/2014

  • Davidson EA, Savage K, Verchot L, Navarro R. 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37.

    Article  Google Scholar 

  • Domisch T, Finér L, Ohashi M, Risch AC, Sundström L, Niemelä P, Jurgensen MF. 2006. Contribution of red wood ant mounds to forest floor CO2 efflux in boreal coniferous forests. Soil Biol Biochem 38:2425–33.

    Article  CAS  Google Scholar 

  • Douaik A, Van Meirvenne M, Toth T. 2006. Temporal stability of spatial patterns of soil salinity determined from laboratory and field electrolytic conductivity. Arid Land Res Manag 20:1–13.

    Article  CAS  Google Scholar 

  • Driessen P, Deckers J, Spaargaren O, Nachtergaele F. 2001. Lecture notes on the major soils of the world. (Driessen P, Deckers J, Spaargaren O, Nachtergaele F, editors.). Food and Agriculture Organization (FAO)

  • Evans SE, Burke IC. 2013. Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems 16:20–33.

    Article  CAS  Google Scholar 

  • Fang Y, Gundersen P, Zhang W, Zhou G, Christiansen JR, Mo J, Dong S, Zhang T. 2009. Soil–atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in Southern China. Plant Soil 319:37–48.

    Article  CAS  Google Scholar 

  • Flechard CR, Neftel A, Jocher M, Ammann C, Fuhrer J. 2005. Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biol 11:2114–27. http://doi.wiley.com/10.1111/j.1365-2486.2005.01056.x. Last Accessed 31/01/2014

  • Fóti S, Balogh J, Herbst M, Papp M, Koncz P, Bartha S, Zimmermann Z, Komoly C, Szabó G, Margóczi K, Acosta M, Nagy Z. 2016. Meta-analysis of field scale spatial variability of grassland soil CO2 efflux: Interaction of biotic and abiotic drivers. Catena 143:78–89. http://linkinghub.elsevier.com/retrieve/pii/S0341816216301205

  • Fóti S, Balogh J, Nagy Z, Herbst M, Pintér K, Péli E, Koncz P, Bartha S. 2014. Soil moisture induced changes on fine-scale spatial pattern of soil respiration in a semi-arid sandy grassland. Geoderma 213:245–54.

    Article  Google Scholar 

  • Fox J, Weisberg S. 2011. An R companion to applied regression. Second: Sage.

    Google Scholar 

  • Gao L, Shao M. 2012. Temporal stability of soil water storage in diverse soil layers. CATENA 95:24–32. doi:10.1016/j.catena.2012.02.020.

    Article  Google Scholar 

  • Graf A, Prolingheuer N, Schickling A, Schmidt M, Schneider K, Schüttemeyer D, Herbst M, Huisman JA, Weihermüller L, Scharnagl B, Steenpass C, Harms R, Vereecken H. 2010. Temporal downscaling of soil carbon dioxide efflux measurements based on time-stable spatial patterns. Vadose Zone J 10:239–51.

    Article  Google Scholar 

  • Herbst M, Bornemann L, Graf A, Welp G, Vereecken H, Amelung W. 2012. A geostatistical approach to the field-scale pattern of heterotrophic soil CO2 emission using covariates. Biogeochemistry 111:377–92.

    Article  CAS  Google Scholar 

  • Herbst M, Prolingheuer N, Graf A, Huisman JA, Weihermüller L, Vanderborght J. 2009. Characterization and understanding of bare soil respiration spatial variability at plot scale. Vadose Zone J 8:762–71.

    Article  Google Scholar 

  • Horváth L, Grosz B, Machon A, Tuba Z, Nagy Z, Czóbel SZ, Balogh J, Péli E, Fóti SZ, Weidinger T. 2010. Estimation of nitrous oxide emission from Hungarian semi-arid sandy and loess grasslands; effect of soil parameters, grazing, irrigation and use of fertilizer. Agr Ecosyst Environ 139:255–63.

    Article  Google Scholar 

  • Huang X, Grace P, Mengersen K, Weier K. 2011. Spatio-temporal variation in soil derived nitrous oxide emissions under sugarcane. Sci Total Environ 409:4572–8. http://www.ncbi.nlm.nih.gov/pubmed/21872292. Last Accessed 05/02/2014

  • Imer D, Merbold L, Eugster W, Buchmann N. 2013. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences 10:5931–45.

    Article  CAS  Google Scholar 

  • IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow C von, Zwickel T, Minx JC, editors.). Cambridge: Cambridge University Press.

  • Jungkunst H, Flessa H, Scherber C, Fiedler S. 2008. Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047–54.

    Article  CAS  Google Scholar 

  • Jurasinski G, Jordan A, Glatzel S. 2012. Mapping soil CO2 efflux in an old-growth forest using regression kriging with estimated fine root biomass as ancillary data. For Ecol Manage 263:101–13.

    Article  Google Scholar 

  • Knohl A, Søe ARB, Kutsch WL, Göckede M, Buchmann N, Soe A, Gockede M. 2008. Representative estimates of soil and ecosystem respiration in an old beech forest. Plant Soil 302:189–202.

    Article  CAS  Google Scholar 

  • Koncz P, Balogh J, Papp M, Hidy D, Pintér K, Fóti S, Klumpp K, Nagy Z. 2015. Higher soil respiration under mowing than under grazing explained by biomass differences. Nutr Cycl Agroecosyst 103:201–15. http://link.springer.com/10.1007/s10705-015-9732-3

  • Koncz P, Besnyői V, Csathó AI, Nagy J, Szerdahelyi T, Tóth Z, Pintér K, Balogh J, Nagy Z, Bartha S. 2014. Effect of grazing and mowing on the microcoenological composition of semi-arid grassland in Hungary. Appl Ecol Environ Res 12(2):563–75.

    Article  Google Scholar 

  • Konda R, Ohta S, Ishizuka S, Arai S, Ansori S, Tanaka N, Hardjono a. 2008. Spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biol Biochem 40:3021–30. http://linkinghub.elsevier.com/retrieve/pii/S0038071708002952. Last accessed 30/01/2014

  • Konda R, Ohta S, Ishizuka S, Heriyanto J, Wicaksono A. 2010. Seasonal changes in the spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils in Indonesia. Soil Biol Biochem 42:1512–22. http://linkinghub.elsevier.com/retrieve/pii/S0038071710001835. Last Accessed 30/01/2014

  • Kool DM, Müller C, Wrage N, Oenema O, Van Groenigen JW. 2009. Oxygen exchange between nitrogen oxides and H2O can occur during nitrifier pathways. Soil Biol Biochem 41:1632–41. http://linkinghub.elsevier.com/retrieve/pii/S0038071709001795. Last Accessed 17/07/2014

  • Kosugi Y, Mitani T, Itoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Rahim Nik A. 2007. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric For Meteorol 147:35–47.

    Article  Google Scholar 

  • Kuzyakov Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–48.

    Article  CAS  Google Scholar 

  • Li Y, Fu X, Liu X, Shen J, Luo Q, Xiao R, Li Y, Tong C, Wu J. 2013. Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical Central China. Geoderma 193–194:1–12. http://linkinghub.elsevier.com/retrieve/pii/S0016706112003503. Last Accessed 31/01/2014

  • Lin Y, Hong M, Han G, Zhao M, Bai Y, Chang SX. 2010. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agr Ecosyst Environ 138:282–92.

    Article  Google Scholar 

  • Livesley SJ, Grover S, Hutley LB, Jamali H, Butterbach-Bahl K, Fest B, Beringer J, Arndt SK. 2011. Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agric For Meteorol 151:1440–52.

    Article  Google Scholar 

  • Loreau M, de Mazancourt C. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–15.

    Article  PubMed  Google Scholar 

  • Luan J, Liu S, Zhu X, Wang J, Liu K. 2012. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biol Biochem 44:143–50. doi:10.1016/j.soilbio.2011.08.012.

    Article  CAS  Google Scholar 

  • Mendonça EDS, La Scala N, Panosso AR, Simas FNB, Schaefer CEGR. 2010. Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island. Antarct Sci 23:27–33.

    Article  Google Scholar 

  • Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. 2014. e1071: Misc functions of the department of statistics (e1071), TU Wien. http://cran.r-project.org/package=e1071

  • Nagy Z, Pintér K, Czóbel S, Balogh J, Horváth L, Fóti S, Barcza Z, Weidinger T, Csintalan Z, Dinh NQ, Grosz B, Tuba Z. 2007. The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agr Ecosyst Environ 121:21–9.

    Article  CAS  Google Scholar 

  • Oenema O, Velthof GL, Yamulki S, Jarvis SC. 1997. Nitrous oxide emissions from grazed grassland. Soil Use Manag 13:288–95. http://onlinelibrary.wiley.com.ezproxy.is.ed.ac.uk/

  • Ohashi M, Gyokusen K. 2007. Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biol Biochem 39:1130–8.

    Article  CAS  Google Scholar 

  • Pebesma EJ. 2004. Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–91.

    Article  Google Scholar 

  • Pinter K, Balogh J, Nagy Z. 2010. Ecosystem scale carbon dioxide balance of two grasslands in Hungary under different weather conditions. Acta Biol Hung 61:130–5.

    Article  PubMed  Google Scholar 

  • Porcar-Castell A, Mac Arthur A, Rossini M, Eklundh L, Pacheco-Labrador J, Anderson K, Balzarolo M, Martín MP, Jin H, Tomelleri E, Cerasoli S, Sakowska K, Hueni A, Julitta T, Nichol CJ, Vescovo L. 2015. EUROSPEC: at the interface between remote-sensing and ecosystem CO2 flux measurements in Europe. Biogeosciences 12:6103–24.

    Article  CAS  Google Scholar 

  • Prolingheuer N, Scharnagl B, Graf a., Vereecken H, Herbst M. 2014. On the spatial variation of soil rhizospheric and heterotrophic respiration in a winter wheat stand. Agric For Meteorol 195–196:24–31. http://linkinghub.elsevier.com/retrieve/pii/S0168192314001166. Last accessed 27/05/2014

  • Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke J-A, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–76.

    Article  Google Scholar 

  • R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Rodeghiero M, Cescatti A. 2008. Spatial variability and optimal sampling strategy of soil respiration. For Ecol Manag 255:106–12.

    Article  Google Scholar 

  • Röver M, Heinemeyer O, Munch JC, Kaiser E. 1999. Spatial heterogeneity within the plough layer : high variability of N2O emission rates. Soil Biol Biochem 31:167–73.

    Article  Google Scholar 

  • La Scala N Jr, Marques J Jr, Pereira GT, Cora JE. 2000. Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biol Biochem 32:0–3.

    Google Scholar 

  • Skiba U, Drewer J, Tang YS, van Dijk N, Helfter C, Nemitz E, Famulari D, Cape JN, Jones SK, Twigg M. 2009. Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets. Agric Ecosyst Environ 133:139–49. http://linkinghub.elsevier.com/retrieve/pii/S0167880909001686. Last Accessed 31/01/2014

  • Søe ARB, Buchmann N. 2005. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol 25:1427–36.

    Article  PubMed  Google Scholar 

  • Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen a., Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel a., Raschi a., Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R, Cliftonbrown J, Czobel S, Domingues R. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–34. http://linkinghub.elsevier.com/retrieve/pii/S0167880906004373. Last Accessed 22/01/2014

  • Teixeira DDB, Panosso AR, Cerri CEP, Pereira GT, La Scala N. 2011. Soil CO2 emission estimated by different interpolation techniques. Plant Soil 345:187–94.

    Article  CAS  Google Scholar 

  • Turner DA, Chen D, Galbally IE, Leuning R, Edis RB, Li Y, Kelly K, Phillips F. 2008. Spatial variability of nitrous oxide emissions from an Australian irrigated dairy pasture. Plant Soil 309:77–88.

    Article  CAS  Google Scholar 

  • Venables VN, Ripley BD. 2002. Modern applied statistics with S. 4th edn. Berlin: Springer.

    Book  Google Scholar 

  • Wang WJ, Zu YG, Wang HM, Hirano T, Takagi K, Sasa K, Koike T. 2005. Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. J For Res 10:57–60.

    Article  Google Scholar 

  • Yanai J, Saqamoto T, Oe T, Kusa K, Yamakawa K, Sakamoto K, Naganawa T, Inubushi K, Hatano K, Kosaki T. 2003. Atmospheric pollutants and trace gases. Spatial variability of nitrous oxide emissions and their soil-related determining factors in an agricultural field. J Environ Qual 32:1965–77.

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Wolf B, Chen W, Butterbach-Bahl K, Brüggemann N, Wiesmeier M, Dannenmann M, Blank B, Zheng X. 2009. Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant Soil 331:341–59.

    Article  Google Scholar 

  • Zhou Z, Sun OJ, Luo Z, Jin H, Chen Q, Han X. 2008. Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant Soil 310:103–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michael Herbst for the valuable comments on the spatial data processing. The authors gratefully acknowledge the financial support of the following foundations and research programs: OTKA-PD 100575, OTKA-K 105608 and Research Centre of Excellence—1476-4/2016/FEKUT. Szilvia Fóti and János Balogh acknowledge the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilvia Fóti.

Additional information

Access to raw data related to this manuscript can be found at: http://nofi.szie.hu/sites/default/files/ecos_Foti_et_al_2017.zip.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fóti, S., Balogh, J., Papp, M. et al. Temporal Variability of CO2 and N2O Flux Spatial Patterns at a Mowed and a Grazed Grassland. Ecosystems 21, 112–124 (2018). https://doi.org/10.1007/s10021-017-0138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0138-8

Keywords

Navigation