Ecosystems

pp 1–13 | Cite as

Temporal Variability of CO2 and N2O Flux Spatial Patterns at a Mowed and a Grazed Grassland

  • Szilvia Fóti
  • János Balogh
  • Marianna Papp
  • Péter Koncz
  • Dóra Hidy
  • Zsolt Csintalan
  • Péter Kertész
  • Sándor Bartha
  • Zita Zimmermann
  • Marianna Biró
  • László Hováth
  • Erik Molnár
  • Albert Szaniszló
  • Krisztina Kristóf
  • Györgyi Kampfl
  • Zoltán Nagy
Article

Abstract

Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes.

Keywords

CO2 efflux kriging N2O flux semivariance spatial pattern temporal persistence 

Supplementary material

10021_2017_138_MOESM1_ESM.docx (662 kb)
Supplementary material 1 (DOCX 661 kb)

References

  1. Acosta M, Pavelka M, Montagnani L, Kutsch W, Lindroth A, Juszczak R, Janouš D. 2013. Soil surface CO2 efflux measurements in Norway spruce forests: comparison between four different sites across Europe—from boreal to alpine forest. Geoderma 192:295–303.CrossRefGoogle Scholar
  2. Allaire SE, Lange SF, Lafond JA, Pelletier B, Cambouris AN, Dutilleul P. 2012. Multiscale spatial variability of CO2 emissions and correlations with physico-chemical soil properties. Geoderma 170:251–60.CrossRefGoogle Scholar
  3. ArchMiller AA, Samuelson LJ, Li Y. 2016. Spatial variability of soil respiration in a 64-year-old longleaf pine forest. Plant Soil. http://link.springer.com/10.1007/s11104-016-2817-1
  4. Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S. 2008. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11:1352–67.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balogh J, Fóti S, Pintér K, Burri S, Eugster W, Papp M, Nagy Z. 2015. Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil 388:157–73.CrossRefGoogle Scholar
  6. Barba J, Curiel Yuste J, Martínez-Vilalta J, Lloret F. 2013. Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. For Ecol Manag 306:79–87. doi:10.1016/j.foreco.2013.06.025.CrossRefGoogle Scholar
  7. Bartholy J, Pongrácz R. 2007. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global Planet Change 57:83–95.CrossRefGoogle Scholar
  8. Bivand R, Keitt T, Rowlingson B. 2014. rgdal: Bindings for the Geospatial Data Abstraction Library.Google Scholar
  9. Burzaco JP, Smith DR, Vyn TJ. 2013. Nitrous oxide emissions in Midwest US maize production vary widely with band-injected N fertilizer rates, timing and nitrapyrin presence. Environ Res Lett 8:1–11. http://stacks.iop.org/1748-9326/8/i=3/a=035031?key=crossref.935eda0fb4df97c2964fb502620e5bfe. Last Accessed 23/07/2014
  10. Chapuis-Lardy L, Wrage N, Metay AA, Chotte J-L, Bernoux M. 2007. Soils, a sink for N2O? A review. Glob Change Biol 13:1–17.CrossRefGoogle Scholar
  11. Clemens J, Schillinger M, Goldbach H, Huwe B. 1999. Spatial variability of N2O emissions and soil parameters of an arable silt loam–a field study. Biol Fert Soils 28:403–6. http://link.springer.com/article/10.1007/s003740050512. Last Accessed 30/01/2014
  12. Davidson EA, Savage K, Verchot L, Navarro R. 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37.CrossRefGoogle Scholar
  13. Domisch T, Finér L, Ohashi M, Risch AC, Sundström L, Niemelä P, Jurgensen MF. 2006. Contribution of red wood ant mounds to forest floor CO2 efflux in boreal coniferous forests. Soil Biol Biochem 38:2425–33.CrossRefGoogle Scholar
  14. Douaik A, Van Meirvenne M, Toth T. 2006. Temporal stability of spatial patterns of soil salinity determined from laboratory and field electrolytic conductivity. Arid Land Res Manag 20:1–13.CrossRefGoogle Scholar
  15. Driessen P, Deckers J, Spaargaren O, Nachtergaele F. 2001. Lecture notes on the major soils of the world. (Driessen P, Deckers J, Spaargaren O, Nachtergaele F, editors.). Food and Agriculture Organization (FAO)Google Scholar
  16. Evans SE, Burke IC. 2013. Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems 16:20–33.CrossRefGoogle Scholar
  17. Fang Y, Gundersen P, Zhang W, Zhou G, Christiansen JR, Mo J, Dong S, Zhang T. 2009. Soil–atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in Southern China. Plant Soil 319:37–48.CrossRefGoogle Scholar
  18. Flechard CR, Neftel A, Jocher M, Ammann C, Fuhrer J. 2005. Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biol 11:2114–27. http://doi.wiley.com/10.1111/j.1365-2486.2005.01056.x. Last Accessed 31/01/2014
  19. Fóti S, Balogh J, Herbst M, Papp M, Koncz P, Bartha S, Zimmermann Z, Komoly C, Szabó G, Margóczi K, Acosta M, Nagy Z. 2016. Meta-analysis of field scale spatial variability of grassland soil CO2 efflux: Interaction of biotic and abiotic drivers. Catena 143:78–89. http://linkinghub.elsevier.com/retrieve/pii/S0341816216301205
  20. Fóti S, Balogh J, Nagy Z, Herbst M, Pintér K, Péli E, Koncz P, Bartha S. 2014. Soil moisture induced changes on fine-scale spatial pattern of soil respiration in a semi-arid sandy grassland. Geoderma 213:245–54.CrossRefGoogle Scholar
  21. Fox J, Weisberg S. 2011. An R companion to applied regression. Second: Sage.Google Scholar
  22. Gao L, Shao M. 2012. Temporal stability of soil water storage in diverse soil layers. CATENA 95:24–32. doi:10.1016/j.catena.2012.02.020.CrossRefGoogle Scholar
  23. Graf A, Prolingheuer N, Schickling A, Schmidt M, Schneider K, Schüttemeyer D, Herbst M, Huisman JA, Weihermüller L, Scharnagl B, Steenpass C, Harms R, Vereecken H. 2010. Temporal downscaling of soil carbon dioxide efflux measurements based on time-stable spatial patterns. Vadose Zone J 10:239–51.CrossRefGoogle Scholar
  24. Herbst M, Bornemann L, Graf A, Welp G, Vereecken H, Amelung W. 2012. A geostatistical approach to the field-scale pattern of heterotrophic soil CO2 emission using covariates. Biogeochemistry 111:377–92.CrossRefGoogle Scholar
  25. Herbst M, Prolingheuer N, Graf A, Huisman JA, Weihermüller L, Vanderborght J. 2009. Characterization and understanding of bare soil respiration spatial variability at plot scale. Vadose Zone J 8:762–71.CrossRefGoogle Scholar
  26. Horváth L, Grosz B, Machon A, Tuba Z, Nagy Z, Czóbel SZ, Balogh J, Péli E, Fóti SZ, Weidinger T. 2010. Estimation of nitrous oxide emission from Hungarian semi-arid sandy and loess grasslands; effect of soil parameters, grazing, irrigation and use of fertilizer. Agr Ecosyst Environ 139:255–63.CrossRefGoogle Scholar
  27. Huang X, Grace P, Mengersen K, Weier K. 2011. Spatio-temporal variation in soil derived nitrous oxide emissions under sugarcane. Sci Total Environ 409:4572–8. http://www.ncbi.nlm.nih.gov/pubmed/21872292. Last Accessed 05/02/2014
  28. Imer D, Merbold L, Eugster W, Buchmann N. 2013. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences 10:5931–45.CrossRefGoogle Scholar
  29. IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow C von, Zwickel T, Minx JC, editors.). Cambridge: Cambridge University Press.Google Scholar
  30. Jungkunst H, Flessa H, Scherber C, Fiedler S. 2008. Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047–54.CrossRefGoogle Scholar
  31. Jurasinski G, Jordan A, Glatzel S. 2012. Mapping soil CO2 efflux in an old-growth forest using regression kriging with estimated fine root biomass as ancillary data. For Ecol Manage 263:101–13.CrossRefGoogle Scholar
  32. Knohl A, Søe ARB, Kutsch WL, Göckede M, Buchmann N, Soe A, Gockede M. 2008. Representative estimates of soil and ecosystem respiration in an old beech forest. Plant Soil 302:189–202.CrossRefGoogle Scholar
  33. Koncz P, Balogh J, Papp M, Hidy D, Pintér K, Fóti S, Klumpp K, Nagy Z. 2015. Higher soil respiration under mowing than under grazing explained by biomass differences. Nutr Cycl Agroecosyst 103:201–15. http://link.springer.com/10.1007/s10705-015-9732-3
  34. Koncz P, Besnyői V, Csathó AI, Nagy J, Szerdahelyi T, Tóth Z, Pintér K, Balogh J, Nagy Z, Bartha S. 2014. Effect of grazing and mowing on the microcoenological composition of semi-arid grassland in Hungary. Appl Ecol Environ Res 12(2):563–75.CrossRefGoogle Scholar
  35. Konda R, Ohta S, Ishizuka S, Arai S, Ansori S, Tanaka N, Hardjono a. 2008. Spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biol Biochem 40:3021–30. http://linkinghub.elsevier.com/retrieve/pii/S0038071708002952. Last accessed 30/01/2014
  36. Konda R, Ohta S, Ishizuka S, Heriyanto J, Wicaksono A. 2010. Seasonal changes in the spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils in Indonesia. Soil Biol Biochem 42:1512–22. http://linkinghub.elsevier.com/retrieve/pii/S0038071710001835. Last Accessed 30/01/2014
  37. Kool DM, Müller C, Wrage N, Oenema O, Van Groenigen JW. 2009. Oxygen exchange between nitrogen oxides and H2O can occur during nitrifier pathways. Soil Biol Biochem 41:1632–41. http://linkinghub.elsevier.com/retrieve/pii/S0038071709001795. Last Accessed 17/07/2014
  38. Kosugi Y, Mitani T, Itoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Rahim Nik A. 2007. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric For Meteorol 147:35–47.CrossRefGoogle Scholar
  39. Kuzyakov Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–48.CrossRefGoogle Scholar
  40. Li Y, Fu X, Liu X, Shen J, Luo Q, Xiao R, Li Y, Tong C, Wu J. 2013. Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical Central China. Geoderma 193–194:1–12. http://linkinghub.elsevier.com/retrieve/pii/S0016706112003503. Last Accessed 31/01/2014
  41. Lin Y, Hong M, Han G, Zhao M, Bai Y, Chang SX. 2010. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agr Ecosyst Environ 138:282–92.CrossRefGoogle Scholar
  42. Livesley SJ, Grover S, Hutley LB, Jamali H, Butterbach-Bahl K, Fest B, Beringer J, Arndt SK. 2011. Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agric For Meteorol 151:1440–52.CrossRefGoogle Scholar
  43. Loreau M, de Mazancourt C. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–15.CrossRefPubMedGoogle Scholar
  44. Luan J, Liu S, Zhu X, Wang J, Liu K. 2012. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biol Biochem 44:143–50. doi:10.1016/j.soilbio.2011.08.012.CrossRefGoogle Scholar
  45. Mendonça EDS, La Scala N, Panosso AR, Simas FNB, Schaefer CEGR. 2010. Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island. Antarct Sci 23:27–33.CrossRefGoogle Scholar
  46. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. 2014. e1071: Misc functions of the department of statistics (e1071), TU Wien. http://cran.r-project.org/package=e1071
  47. Nagy Z, Pintér K, Czóbel S, Balogh J, Horváth L, Fóti S, Barcza Z, Weidinger T, Csintalan Z, Dinh NQ, Grosz B, Tuba Z. 2007. The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agr Ecosyst Environ 121:21–9.CrossRefGoogle Scholar
  48. Oenema O, Velthof GL, Yamulki S, Jarvis SC. 1997. Nitrous oxide emissions from grazed grassland. Soil Use Manag 13:288–95. http://onlinelibrary.wiley.com.ezproxy.is.ed.ac.uk/
  49. Ohashi M, Gyokusen K. 2007. Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biol Biochem 39:1130–8.CrossRefGoogle Scholar
  50. Pebesma EJ. 2004. Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–91.CrossRefGoogle Scholar
  51. Pinter K, Balogh J, Nagy Z. 2010. Ecosystem scale carbon dioxide balance of two grasslands in Hungary under different weather conditions. Acta Biol Hung 61:130–5.CrossRefPubMedGoogle Scholar
  52. Porcar-Castell A, Mac Arthur A, Rossini M, Eklundh L, Pacheco-Labrador J, Anderson K, Balzarolo M, Martín MP, Jin H, Tomelleri E, Cerasoli S, Sakowska K, Hueni A, Julitta T, Nichol CJ, Vescovo L. 2015. EUROSPEC: at the interface between remote-sensing and ecosystem CO2 flux measurements in Europe. Biogeosciences 12:6103–24.CrossRefGoogle Scholar
  53. Prolingheuer N, Scharnagl B, Graf a., Vereecken H, Herbst M. 2014. On the spatial variation of soil rhizospheric and heterotrophic respiration in a winter wheat stand. Agric For Meteorol 195–196:24–31. http://linkinghub.elsevier.com/retrieve/pii/S0168192314001166. Last accessed 27/05/2014
  54. Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke J-A, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–76.CrossRefGoogle Scholar
  55. R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  56. Rodeghiero M, Cescatti A. 2008. Spatial variability and optimal sampling strategy of soil respiration. For Ecol Manag 255:106–12.CrossRefGoogle Scholar
  57. Röver M, Heinemeyer O, Munch JC, Kaiser E. 1999. Spatial heterogeneity within the plough layer : high variability of N2O emission rates. Soil Biol Biochem 31:167–73.CrossRefGoogle Scholar
  58. La Scala N Jr, Marques J Jr, Pereira GT, Cora JE. 2000. Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biol Biochem 32:0–3.Google Scholar
  59. Skiba U, Drewer J, Tang YS, van Dijk N, Helfter C, Nemitz E, Famulari D, Cape JN, Jones SK, Twigg M. 2009. Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets. Agric Ecosyst Environ 133:139–49. http://linkinghub.elsevier.com/retrieve/pii/S0167880909001686. Last Accessed 31/01/2014
  60. Søe ARB, Buchmann N. 2005. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol 25:1427–36.CrossRefPubMedGoogle Scholar
  61. Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen a., Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel a., Raschi a., Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R, Cliftonbrown J, Czobel S, Domingues R. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–34. http://linkinghub.elsevier.com/retrieve/pii/S0167880906004373. Last Accessed 22/01/2014
  62. Teixeira DDB, Panosso AR, Cerri CEP, Pereira GT, La Scala N. 2011. Soil CO2 emission estimated by different interpolation techniques. Plant Soil 345:187–94.CrossRefGoogle Scholar
  63. Turner DA, Chen D, Galbally IE, Leuning R, Edis RB, Li Y, Kelly K, Phillips F. 2008. Spatial variability of nitrous oxide emissions from an Australian irrigated dairy pasture. Plant Soil 309:77–88.CrossRefGoogle Scholar
  64. Venables VN, Ripley BD. 2002. Modern applied statistics with S. 4th edn. Berlin: Springer.CrossRefGoogle Scholar
  65. Wang WJ, Zu YG, Wang HM, Hirano T, Takagi K, Sasa K, Koike T. 2005. Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. J For Res 10:57–60.CrossRefGoogle Scholar
  66. Yanai J, Saqamoto T, Oe T, Kusa K, Yamakawa K, Sakamoto K, Naganawa T, Inubushi K, Hatano K, Kosaki T. 2003. Atmospheric pollutants and trace gases. Spatial variability of nitrous oxide emissions and their soil-related determining factors in an agricultural field. J Environ Qual 32:1965–77.CrossRefPubMedGoogle Scholar
  67. Yao Z, Wolf B, Chen W, Butterbach-Bahl K, Brüggemann N, Wiesmeier M, Dannenmann M, Blank B, Zheng X. 2009. Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant Soil 331:341–59.CrossRefGoogle Scholar
  68. Zhou Z, Sun OJ, Luo Z, Jin H, Chen Q, Han X. 2008. Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant Soil 310:103–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Szilvia Fóti
    • 1
  • János Balogh
    • 2
  • Marianna Papp
    • 1
  • Péter Koncz
    • 1
  • Dóra Hidy
    • 1
  • Zsolt Csintalan
    • 2
  • Péter Kertész
    • 2
  • Sándor Bartha
    • 3
    • 4
  • Zita Zimmermann
    • 2
    • 3
  • Marianna Biró
    • 3
  • László Hováth
    • 5
  • Erik Molnár
    • 6
  • Albert Szaniszló
    • 6
  • Krisztina Kristóf
    • 6
  • Györgyi Kampfl
    • 6
  • Zoltán Nagy
    • 1
    • 2
  1. 1.MTA-SZIE Plant Ecology Research GroupSzent István UniversityGödöllőHungary
  2. 2.Institute of Botany and EcophysiologySzent István UniversityGödöllőHungary
  3. 3.Institute of Ecology and BotanyMTA Centre for Ecological ResearchVácrátótHungary
  4. 4.School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  5. 5.Hungarian Meteorological ServiceBudapestHungary
  6. 6.Institute of Environmental ScienceSzent István UniversityGödöllőHungary

Personalised recommendations