Skip to main content

Long-lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species-rich Grassland: A Battle of Species Pools on Mesic Soils

Abstract

Increasing evidence suggests that past human activities have irreversibly changed soil properties and biodiversity patterns. In the White Carpathian Mts (Central-Eastern Europe), a mosaic of hyper-species-rich and species-rich patches have developed in a regularly mown dry grassland in the area of a glassworks abandoned in the eighteenth century. We tested whether and how anthropogenically changed soils affected the distribution of extraordinary species richness. Using magnetometry we detected former furnaces, workspace, waste deposit and unaffected surrounding grasslands and compared their vegetation and environmental conditions. Archaeological features, especially furnaces and waste deposits, showed a higher pH, higher soil concentrations of exchangeable phosphorus, manganese, lead and calcium, and higher productivity. Surrounding grassland showed higher iron and sodium concentrations in the soil, higher N:P ratio in the biomass and higher species richness. Moisture was uniformly lower in soils on archaeological features, where non-trivially a more ‘mesic’ vegetation in terms of European habitat classification occurred. Plant compositional variation was best explained by water-extractable phosphorus. Because nutrient-richer patches were not moister as common elsewhere, and because species richness was only poorly accounted for by productivity, the occurrence of a species-poor ‘mesic’ vegetation on archaeological features was evidently caused by a long-lasting phosphorus oversupply which favours a comparatively small species pool of rather recently arriving species. On the contrary, surrounding phosphorus-poorer grasslands still contain the ancient species pool whose extraordinary size determines the exceptional species richness of grasslands in the study region. Its maintenance or restoration demands a persistent phosphorus deficiency.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Araya YN, Gowing DJ, Dise N. 2013. Does soil nitrogen availability mediate the response of grassland composition to water regime? J Veg Sci 24:506–17.

    Article  Google Scholar 

  2. Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69.

    Article  Google Scholar 

  3. Biek L, Bayley J. 1979. Glass and other vitreous materials. World Archaeol 11:1–25.

    Article  Google Scholar 

  4. Boecker D, Centeri C, Welp G, Möseler BM. 2015. Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobotanica 50:91–106.

    Article  Google Scholar 

  5. Cachovanová L, Hájek M, Fajmonová Z, Marrs R. 2012. Species richness, community specialization and soil-vegetation relationships of managed grasslands in a geologically heterogeneous landscape. Folia Geobotanica 47:349–71.

    Article  Google Scholar 

  6. Ceulemans T, Merckx R, Hens M, Honnay O. 2013. Plant species loss from European semi-natural grasslands following nutrient enrichment. Is it nitrogen or is it phosphorus? Glob Ecol Biogeogr 22:73–82.

    Article  Google Scholar 

  7. Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowng DJG, Merckx R, Wallace H, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupr C, Diekmann M, Honnay O. 2014. Soil phosphorus constrains biodiversity across European grasslands. Glob Change Biol 20:3814–22.

    Article  Google Scholar 

  8. Chytrý M, Ed. 2007. Vegetace České republiky 1. Travinná a keříčková vegetace [Vegetation of the Czech Republic 1. Grassland and heathland vegetation]. Praha: Academia Praha.

    Google Scholar 

  9. Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M. 2015. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–78.

    Google Scholar 

  10. Chytrý M, Rafajová M. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15.

    Google Scholar 

  11. Cílová Z, Woitsch J. 2012. Potash–a key raw material of glass batch for Bohemian glasses from 14th–17th centuries? J Archaeol Sci 39:371–80.

    Article  Google Scholar 

  12. Closset-Kopp D, Decocq G. 2015. Remnant artificial habitats as biodiversity islets into forest oceans. Ecosystems 18:507–19.

    Article  Google Scholar 

  13. de Mazancourt C, Isbell F, Larocque A, Berendse F, Luca E, Grace JB, Haegeman B, Polley HW, Roscher C, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Loreau M. 2013. Predicting ecosystem stability from community composition and biodiversity. Ecol Lett 16:617–25.

    Article  PubMed  Google Scholar 

  14. Dengler J, Janišová M, Török P, Wellstein C. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14.

    Article  Google Scholar 

  15. Duffková R, Hejcman M, Libichová H. 2015. Effect of cattle slurry on soil and herbage chemical properties, yield, nutrient balance and plant species composition of moderately dry Arrhenatherion grassland. Agric Ecosyst Environ 213:281–9.

    Article  Google Scholar 

  16. Dupouey JL, Dambrine E, Laffite JD, Moares C. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–84.

    Article  Google Scholar 

  17. Ewald J. 2003. The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobotanica 38:357–66.

    Article  Google Scholar 

  18. Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JM, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–3.

    CAS  Article  PubMed  Google Scholar 

  19. Güsewell S, Bailey KM, Roem WJ, Bedford BL. 2005. Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness? Oikos 109:71–80.

    Article  Google Scholar 

  20. Gustafsson BG, Schenk F, Blenckner T, Eilola K, Meier HEM, Müller-Karulis B, Neumann T, Ruoho-Airola T, Savchuk OP, Zorita E. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41:534–48.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hájek M, Dudová L, Hájková P, Roleček J, Moutelíková J, Jamrichová E, Horsák M. 2016. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quatern Sci Rev 133:48–61.

    Article  Google Scholar 

  22. Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu Ch, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL. 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–5.

    CAS  Article  PubMed  Google Scholar 

  23. Hejcman M, Klaudisová M, Štursa J, Pavlů V, Schellberg J, Hejcmanová P, Hakla J, Rauch O, Vacek S. 2007. Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agric Ecosyst Environ 118:231–6.

    Article  Google Scholar 

  24. Hejcman M, Szaková J, Schellberg J, Šrek P, Tlustoš P. 2009. The Rengen Grassland Experiment: soil contamination by trace elements after 65 years of Ca, N, P and K fertiliser application. Nutr Cycl Agroecosyst 83:39–50.

    CAS  Article  Google Scholar 

  25. Hejcman M, Karlík P, Ondráček J, Klír T. 2013a. Short-term medieval settlement activities irreversibly changed forest soils and vegetation in Central Europe. Ecosystems 16:652–63.

    Article  Google Scholar 

  26. Hejcman M, Hejcmanová P, Pavlů V, Beneš J. 2013b. Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–63.

    Article  Google Scholar 

  27. Helsen K, Ceulemans T, Stevens CJ, Honnay O. 2014. Increasing soil nutrient loads of European semi-natural grasslands strongly alter plant functional diversity independently of species loss. Ecosystems 17:169–81.

    Article  Google Scholar 

  28. Hunt CO, Gilbertson DD, El-Rishi HA. 2007. An 8000-year history of landscape, climate, and copper exploitation in the Middle East: the Wadi Faynan and the Wadi Dana National Reserve in southern Jordan. J Archaeol Sci 34:1306–38.

    Article  Google Scholar 

  29. Isbell F, Tilamn D, Polasky S, Binder S, Hawthorne P. 2013. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett 16:454–60.

    Article  PubMed  Google Scholar 

  30. Jongepierová I, Ed. 2008. Louky Bílých Karpat [Grasslands of the White Carpathian Mountains]. Veselí nad Moravou: ZO ČSOP Bílé Karpaty.

    Google Scholar 

  31. Jonasson S. 1992. Plant responses to fertilization and species removal in tundra related to community structure and clonality. Oikos 63:420–9.

    Article  Google Scholar 

  32. Kapusta P, Szarek-Łukaszewska G, Jędrzejczyk-Korycińska M, Zagórna M. 2015. Do heavy-metal grassland species survive under a Scots pine canopy during early stages of secondary succession? Folia Geobotanica 50:317–29.

    Article  Google Scholar 

  33. Karlík P, Poschlod P. 2014. Půdní semenná banka a nadzemní vegetace suchého trávníku „V nákli“ u Srbska v Českém krasu. Bohemia Cent 32:277–96.

    Google Scholar 

  34. Klimeš L, Hájek M, Mudrák O, Dančák M, Preislerová Z, Hájková P, Jongepierová I, Klimešová J. 2013. Effects of changes in management on resistance and resilience in three grassland communities. Appl Veg Sci 16:640–9.

    Article  Google Scholar 

  35. Kuneš P, Odgaard BV, Gaillard M-J. 2011. Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–64.

    Article  Google Scholar 

  36. Kuneš P, Svobodová-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P. 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quatern Sci Rev 116:15–27.

    Article  Google Scholar 

  37. Laliberté R, Zemunik G, Turner BL. 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science 345:1602–5.

    Article  PubMed  Google Scholar 

  38. Lambers H, Plaxton WC. 2015. Phosphorus: back to the roots. Annual Plant Rev 48:3–22.

    Google Scholar 

  39. Marini L, Scotton M, Klimek S, Isselstein J, Pecile A. 2007. Effects of local factors on plant species richness and composition of Alpine meadows. Agric Ecosyst Environ 119:281–8.

    Article  Google Scholar 

  40. Marlon JR, Bartlein PJ, Daniau A-L, Harrison SP, Maezumi SY, Power MJ, Tinner W, Vanniér B. 2013. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quatern Sci Rev 65:5–25.

    Article  Google Scholar 

  41. Martinuzzi S, Gavier-Pizarro GI, Lugo AE, Radeloff VC. 2015. Future land-use changes and the potential for novelty in ecosystems of the United States. Ecosystems 18:1332–42.

    Article  Google Scholar 

  42. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. 2015. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30:104–13.

    Article  PubMed  Google Scholar 

  43. Merunková K, Chytrý M. 2012. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol 213:591–602.

    Article  Google Scholar 

  44. Mládková P, Mládek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman RJ. 2015. High-nature-value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. J Appl Ecol 52:1073–81.

    Article  Google Scholar 

  45. Monge G, Jimenez-Espejo FJ, García-Alix A, Martínez-Ruiz F, Mattielli N, Finlayson C, Ohkouchi N, Sánchez MC, de Castro JMB, Blasco R, Rosell J, Carrión J, Rodríguez-Vidal J, Finlayson G. 2015. Earliest evidence of pollution by heavy metals in archaeological sites. Sci Rep 5:14252.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Newbound M, McCarthy MA, Lebel T. 2010. Fungi and the urban environment: a review. Landsc Urban Plann 96:138–45.

    Article  Google Scholar 

  47. Olde Venterink H. 2011. Does phosphorus limitation promote species-rich plant communities? Plant Soil 345:1–9.

    CAS  Article  Google Scholar 

  48. Oliver MA. 1990. Kriging: a method of interpolation for geographical information systems. Int J Geograph Inf Syst 4:313–32.

    Google Scholar 

  49. Palmer MW. 1994. Variation in species richness: towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica 29:511–30.

    Article  Google Scholar 

  50. Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA. 2012. The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6.

    Article  Google Scholar 

  51. Poschlod P, Baumann A, Karlík P. 2009. Origin and development of grasslands in central Europe. In: Veen P, Jefferson R, De Smidt J, Van der Straaten J, Eds. Grasslands in Europe of high nature value. Zeist: KNNV Publishing. pp 15–25.

  52. Prach K, Jongepierová I, Řehounková K, Fajmon K. 2014. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agric Ecosyst Environ 182:131–6.

    Article  Google Scholar 

  53. Prach K, Fajmon K, Jongepierová I, Řehounková K. 2015. Landscape context in colonization of restored dry grasslands by target species. Appl Veg Sci 26:181–9.

    Article  Google Scholar 

  54. Provan DM. 1973. The soils of an iron age farm site—Bjellandsoynae, SW Norway. Nor Archaeol Rev 6:30–41.

    CAS  Article  Google Scholar 

  55. Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L. 2012. Catalogue of alien plants of the Czech Republic: checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255.

    Google Scholar 

  56. Radeloff VC, Williams JW, Bateman BL, Burke KD, Carter SK, Childress ES, Cromwell KJ, Gratton C, Hasley AO, Kraemer BM, Latzka AW, Marin-Spiotta E, Meine CD, Munoz SE, Neeson TM, Pidgeon AM. 2015. The rise of novelty in ecosystems. Ecol Appl 25:2051–68.

    Article  PubMed  Google Scholar 

  57. Roleček J, Čornej II, Tokarjuk AI. 2014. Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34.

    Google Scholar 

  58. Roleček J, Hájek M, Karlík P, Novák J. 2015. Reliktní vegetace na mezických stanovištích. [Relict vegetation on mesic sites]. Zprávy České Botanické Společnosti 50:201–45.

    Google Scholar 

  59. Romey C, Vella C, Rochette P, Andrieu-Ponel V, M-agnin F, Veron A, Talon B, Landuré C, D’Ovidio AM, Delanghe D, Ghilardi M, Angeletti B. 2015. Environmental imprints of landscape evolution and human activities during the Holocene in a small catchment of the Calanques Massif (Cassis, Southern France). Holocene 25:1454–69.

    Article  Google Scholar 

  60. Rozbrojová Z, Hájek M, Hájek O. 2010. Vegetation diversity of mesic meadows and pastures in the West Carpathians. Preslia 82:307–32.

    Google Scholar 

  61. Semelová V, Hejcman M, Pavlů V, Vacek S, Podrázský V. 2008. The Grass Garden in the Giant Mts (Czech Republic): residual effect of long-term fertilization after 62 years. Agric Ecosyst Environ 123:337–42.

    Article  Google Scholar 

  62. Sillinger P. 1929. Bílé Karpaty. Nástin geobotanických poměrů se zvláštním zřetelem ke společenstvům rostlinným [Bílé Karpaty Mts. An outline of geobotanical conditions with a special emphasis on plant communities]. Rozpravy Královské České Společnosti Nauk, ser. Mat Přír 8:1–73.

    Google Scholar 

  63. Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM. 2006. The Park Grass Experiment 1856–2006: its contribution to ecology. J Ecol 94:801–14.

    CAS  Article  Google Scholar 

  64. Škodová I, Janišová M, Hegedüšová K, Borsukevych L, Smatanová J, Kish R, Píš V. 2015. Sub-montane semi-natural grassland communities in the Eastern Carpathians (Ukraine). Tuexenia 35:355–80.

    Google Scholar 

  65. Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytol 200:911–21.

    Article  PubMed  Google Scholar 

  66. Storkey J, Macdonald AJ, Poulton PR, Scott T, Köhler IH, Schnyder H, Goulding KWT, Crawley MJ. 2015. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528:401–4.

    CAS  Article  PubMed  Google Scholar 

  67. Tyler G. 1996. Soil chemistry and plant distributions in rock habitats of Southern Sweden. Nordic J Bot 16:609–35.

    Article  Google Scholar 

  68. van der Maarel E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114.

    Article  Google Scholar 

  69. van Rooijen NM, de Keersmaecker W, Ozinga WA, Coppin P, Hennekens SM, Schaminée JHJ, Somers B, Honnay O. 2015. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18:1383–94.

    Article  Google Scholar 

  70. Veen P, Jefferson R, de Smidt J, van der Straaten J. 2009. Grasslands in Europe of high nature value. Zeist: KNNV Publishing.

    Google Scholar 

  71. Woch MW, Kapusta P, Stefanowicz AM. 2015. Variation in dry grassland communities along a heavy metals gradient. Ecotoxicology 25:80–90.

    Article  PubMed Central  Google Scholar 

  72. Wilson JB, Peet RK, Dengler J, Pärtel M. 2012. Plant species richness: the world records. J Veg Sci 23:796–802.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Masaryk University (Project No. MUNI/M/1790/2014). PH was partially supported by the long-term developmental project of the Czech Academy of Sciences (RVO 67985939). We are grateful to all colleagues and friends who helped us with this research, especially Katarína Devánová and Lucia Cachovanová, who participated in field sampling. Karel Prach, Jan Roleček, Jaroslav Záhora, Vít Syrovátka, Jan Divíšek and Kateřina Břečková commented on some of our interpretations or analyses. Three anonymous reviewers provided useful comments. Ilona Knollová exported data from the phytosociological database. Jan W. Jongepier kindly edited the paper linguistically. The Brontosaurus Movement, core unit Mařatice, has conducted conservation management of the grassland in the past decades and scythed the trodden sward in 2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Hájek.

Additional information

Author contributions

MH, PD and PH conceived of study and designed field sampling; PD and PM performed the archaeological research; MH, PH, EH and ZP performed field research on vegetation and soil properties; MP designed and performed chemical analyses; MH, EH and ZP analysed vegetation and soil data; PM analysed magnetometric data; PD performed spatial analyses; MH wrote the paper.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hájek, M., Dresler, P., Hájková, P. et al. Long-lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species-rich Grassland: A Battle of Species Pools on Mesic Soils. Ecosystems 20, 1233–1249 (2017). https://doi.org/10.1007/s10021-017-0107-2

Download citation

Keywords

  • biodiversity
  • Anthropocene
  • archaeology
  • phosphorus
  • species richness
  • productivity
  • N:P biomass ratio
  • soil magnetism
  • moisture
  • restoration