Adam P. 1990. Saltmarsh ecology. Cambridge, UK.: Cambridge University Press.
Book
Google Scholar
Adam P. 2002. Saltmarshes in a time of change. Environ Conserv 29:39–61.
Article
Google Scholar
Adam P, Wilson N, Huntley B. 1988. The phytosociology of coastal saltmarsh vegetation in New South Wales. Wetlands (Australia) 7:35–85.
Google Scholar
Adame MF, Neil D, Wright SF, Lovelock CE. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuar Coast Shelf Sci 86:21–30.
Article
Google Scholar
Alongi DM. 2002. Present state and future of the world’s mangrove forests. Environ Conserv 29:331–49.
Article
Google Scholar
Arnarson TS, Keil RG. 2007. Changes in organic matter–mineral interactions for marine sediments with varying oxygen exposure times. Geochim Cosmochim Acta 71:3545–56.
CAS
Article
Google Scholar
Bader R, Hood D, Smith J. 1960. Recovery of dissolved organic matter in sea-water and organic sorption by particulate material. Geochim Cosmochim Acta 19:236–43.
CAS
Article
Google Scholar
Baldock JA, Masiello C, Gelinas Y, Hedges J. 2004. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64.
CAS
Article
Google Scholar
Baldock JA, Skjemstad JO. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710.
CAS
Article
Google Scholar
Blum LK. 1993. Spartina alterniflora root dynamics in a Virginia marsh. Mar Ecol Prog Ser 102:697178.
Article
Google Scholar
Bock MJ, Mayer LM. 2000. Mesodensity organo–clay associations in a near-shore sediment. Mar Geol 163:65–75.
CAS
Article
Google Scholar
Bouillon S, Connolly R, Gillikin D. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In: Wolanski E, McLusky DS, Eds. Treatise on estuarine and coastal science. Waltham: Academic Press. p 143–73.
Chapter
Google Scholar
Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and regression trees. Belmont, CA: Wadsworth.
Google Scholar
Burdige DJ. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–85.
CAS
Article
PubMed
Google Scholar
Chen S, Torres R, Goñi MA. 2015a. The role of salt marsh structure in the distribution of surface sedimentary organic matter. Estuaries Coasts 39:108–22.
Article
Google Scholar
Chen Y, Chen G, Ye Y. 2015b. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Sci Total Environ 526:19–28.
CAS
Article
PubMed
Google Scholar
Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles 17:22:21–22:12.
Choi Y, Wang Y, Hsieh Y-P, Robinson L. 2001. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes. Global Biogeochem Cycles 15:311–19.
CAS
Article
Google Scholar
Clarke PJ, Jacoby CA. 1994. Biomass and above-ground productivity of salt-marsh plants in south-eastern Australia. Mar Freshw Res 45:1521–8.
Article
Google Scholar
Connolly RM, Gorman D, Guest MA. 2005. Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144:684–91.
Article
PubMed
Google Scholar
Craft C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnol Oceanogr 52:1220–30.
CAS
Article
Google Scholar
Creese R, Glasby T, West G, Gallen C. 2009. Mapping the habitats of NSW estuaries. NSW Fisheries Final Report Series 113. Port Stephens: Industry & Investment NSW, p 95.
Crooks S, Schutten J, Sheern GD, Pye K, Davy AJ. 2002. Drainage and elevation as factors in the restoration of salt marsh in Britain. Restor Ecol 10:591–602.
Article
Google Scholar
De’ath G, Fabricius KE. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–92.
Article
Google Scholar
De Gryze S, Jassogne L, Bossuyt H, Six J, Merckx R. 2006. Water repellence and soil aggregate dynamics in a loamy grassland soil as affected by texture. Eur J Soil Sci 57:235–46.
Article
Google Scholar
Doetterl S, Six J, Van Wesemael B, Van Oost K. 2012. Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Glob Change Biol 18:2218–32.
Article
Google Scholar
Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–7.
CAS
Article
Google Scholar
Doughty CL, Langley JA, Walker WS, Feller IC, Schaub R, Chapman SK. 2015. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39:385–96.
Article
Google Scholar
Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change 3:961–8.
CAS
Article
Google Scholar
Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24.
Elsey-Quirk T, Seliskar DM, Sommerfield CK, Gallagher JL. 2011. Salt marsh carbon pool distribution in a mid-atlantic lagoon, USA: sea level rise implications. Wetlands 31:87–99.
Article
Google Scholar
Enriquez S, Duarte CM, Sand-Jensen K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content. Oecologia 94:457–71.
Article
Google Scholar
Feller IC, Lovelock CE, McKee KL. 2007. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems 10:347–59.
CAS
Article
Google Scholar
Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–9.
CAS
Article
Google Scholar
Hartnett HE, Keil RG, Hedges JI, Devol AH. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–5.
CAS
Article
Google Scholar
Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115.
CAS
Article
Google Scholar
Jaschinski S, Hansen T, Sommer U. 2008. Effects of acidification in multiple stable isotope analyses. Limnol Oceanogr 6:12–15.
CAS
Article
Google Scholar
Johnson BJ, Moore KA, Lehmann C, Bohlen C, Brown TA. 2007. Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine. Org Geochem 38:394–403.
CAS
Article
Google Scholar
Kelleway JJ, Saintilan N, Macreadie PI, Skilbeck CG, Zawadzki A, Ralph PJ. 2015. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Global Change Biol 22(3):1097–109.
Article
Google Scholar
Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ. 2010. Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochem Cycles 24:GB4026.
Article
Google Scholar
Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24.
Article
Google Scholar
Kristensen E, Bouillon S, Dittmar T, Marchand C. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–19.
CAS
Article
Google Scholar
Kulawardhana RW, Feagin RA, Popescu SC, Boutton TW, Yeager KM, Bianchi TS. 2015. The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes. Estuarine Coast Shelf Sci 154:48–57.
Article
Google Scholar
Laegdsgaard P, Kelleway J, Williams RJ, Harty C. 2009. Protection and management of coastal saltmarsh. Australian saltmarsh ecology. Collingwood: CSIRO Publishing. p 179–210.
Google Scholar
Lavery PS, Mateo MA, Serrano O, Rozaimi M. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8:e73748.
CAS
Article
PubMed
PubMed Central
Google Scholar
Livesley SJ, Andrusiak SM. 2012. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar Coast Shelf Sci 97:19–27.
CAS
Article
Google Scholar
Lovelock CE, Adame MF, Bennion V, Hayes M, O’Mara J, Reef R, Santini NS. 2013. Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of South East Queensland, Australia. Estuaries Coasts 37:763–71.
Article
Google Scholar
Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B. 2007. Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia 153:633–41.
Article
PubMed
Google Scholar
Mazumder D, Saintilan N. 2010. Mangrove leaves are not an important source of dietary carbon and nitrogen for crabs in temperate Australian mangroves. Wetlands 30:375–80.
Article
Google Scholar
McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–60.
Article
Google Scholar
Middelburg J, Nieuwenhuize J, Lubberts R, Van de Plassche O. 1997. Organic carbon isotope systematics of coastal marshes. Estuar Coast Shelf Sci 45:681–7.
CAS
Article
Google Scholar
Middelburg JJ. 1989. A simple rate model for organic matter decomposition in marine sediments. Geochim Cosmochim Acta 53:1577–81.
CAS
Article
Google Scholar
Nelder JA, Baker R. 1972. Generalized linear models. Encyclopedia Stat Sci 135:370–84.
Google Scholar
Nixon SW. 1980. Between coastal marshes and coastal waters: a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry: URI, Marine Advisory Service, Publications Unit.
Ouyang X, Lee S. 2014. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11:5057–71.
Article
Google Scholar
Peterson BJ, Howarth RW, Garritt RH. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic-matter flow. Ecology 67:865–74.
CAS
Article
Google Scholar
Ransom B, Kim D, Kastner M, Wainwright S. 1998. Organic matter preservation on continental slopes: importance of mineralogy and surface area. Geochim Cosmochim Acta 62:1329–45.
CAS
Article
Google Scholar
Rogers K, Knoll EJ, Copeland C, Walsh S. 2015. Quantifying changes to historic fish habitat extent on north coast NSW floodplains, Australia. Reg Environ Change 1–11.
Rogers K, Saintilan N, Copeland C. 2012. Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecol Model 244:148–57.
Article
Google Scholar
Roy P, Williams R, Jones A, Yassini I, Gibbs P, Coates B, West R, Scanes P, Hudson J, Nichol S. 2001. Structure and function of south-east Australian estuaries. Estuar Coast Shelf Sci 53:351–84.
Article
Google Scholar
Saintilan N, Hashimoto T. 1999. Mangrove-saltmarsh dynamics on a bay-head delta in the Hawkesbury River estuary, New South Wales, Australia. Hydrobiologia 413:95–102.
Article
Google Scholar
Saintilan N, Rogers K, Mazumder D, Woodroffe C. 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar Coast Shelf Sci 128:84–92.
CAS
Article
Google Scholar
Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Change Biol 20:147–57.
Article
Google Scholar
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.
CAS
Article
PubMed
Google Scholar
Serrano O, Lavery PS, Duarte CM, Kendrick GA, Calafat A, York P, Steven A, Macreadie P. 2016. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? Biogeosci Discuss 2016:1–24.
Article
Google Scholar
Sutton-Grier AE, Moore AK, Wiley PC, Edwards PET. 2014. Incorporating ecosystem services into the implementation of existing U.S. natural resource management regulations: operationalizing carbon sequestration and storage. Marine Policy 43:246–53.
Article
Google Scholar
Thien SJ. 1979. A flow diagram for teaching texture-by-feel analysis. J Agron Educ 8:54–5.
Google Scholar
Trevathan-Tackett SM, Kelleway JJ, Macreadie PI, Beardall J, Ralph P, Bellgrove A. 2015. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96:3043–57.
Article
PubMed
Google Scholar
Wilton KM. 2002. Coastal wetland habitat dynamics in selected New South Wales estuaries: Australian Catholic University Sydney, Australia.
Zann LP. 2000. The Eastern Australian Region: a dynamic tropical/temperate biotone. Mar Pollut Bull 41:188–203.
CAS
Article
Google Scholar
Zedler J, Nelson P, Adam P. 1995. Plant community organization in New South Wales saltmarshes: species mosaics and potential causes. Wetlands (Australia) 14:1–18.
Google Scholar
Zhou J, Wu Y, Kang Q, Zhang J. 2007. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuar Coast Shelf Sci 71:47–59.
Article
Google Scholar