Synergies Between Forest Biomass Extraction for Bioenergy and Fire Suppression in Mediterranean Ecosystems: Insights from a Storyline-and-Simulation Approach

Abstract

Increases in fire impacts over many regions of the world have led to large-scale investments in fire-suppression efforts. There is increasing recognition that biomass extraction for energy purposes may become an important forest-management practice in fire-prone ecosystems. However, at present, very few studies have explicitly assessed biomass extraction as a fuel treatment at landscape scale. Here, we use a landscape fire-succession model in Catalonia (NE Spain) to quantitatively evaluate the potential effects of a biomass extraction-based strategy on essential fire-regime attributes after considering different levels of fire suppression, biomass extraction intensity, and spatial allocation of such efforts. Our simulations indicated that the effectiveness (area suppressed in relation to expected area to burn) at suppressing wildfires was determined by extraction intensity, spatial allocation of the extraction effort, and the fire-suppression levels involved. Indeed, the highest suppressed-area values were found with lower harvesting intensities, especially under high fire-suppression capabilities and strategies focused on bioenergy goals (figures close to 0.7). However, the leverage (area suppressed in relation to managed area) was higher when the treatments were based on the fire-prevention strategy and focused on high-fire-risk areas (up to 0.45) than with treatment designed for energy reasons (lower than 0.15). We conclude that biomass extraction for energy purposes has the potential to induce changes in fire regimes and can therefore be considered a cost-effective landscape-level fuel-reduction treatment. However, our results suggest that large-scale biomass extraction may be needed if significant changes in fire regimes are to be expected.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Abbas D, Current D, Ryans M, Taff S, Hoganson H, Brooks KN. 2011. Harvesting forest biomass for energy—an alternative to conventional fuel treatments: trials in the Superior National Forest, USA. Biomass Bioenergy 35:4557–64.

    Article  Google Scholar 

  2. Agee JK, Skinner CN. 2005. Basic principles of forest fuel reduction treatments. For Ecol Manag 211:83–96.

    Article  Google Scholar 

  3. Alcamo J, Kreileman GJJ, Bollen JC, Van den Born G, Gerlagh R, Krol MS, Toet AM, de Vries HJ. 1996. Baseline scenarios of global environmental change. Glob Environ Change 6:261–303.

    Article  Google Scholar 

  4. Alvarez A, Gracia M, Vayreda J, Retana J. 2012. Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manag 270:282–90.

    Article  Google Scholar 

  5. Badia A, Serra P, Modugno S. 2011. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland-urban interface areas. Appl Geogr 31:930–40.

    Article  Google Scholar 

  6. Becker DR, Larson D, Lowell EC. 2009. Financial considerations of policy options to enhance biomass utilization for reducing wildfire hazards. For Policy Econ 11:628–35.

    Article  Google Scholar 

  7. Bradstock RA, Cary GJ, Davies I, Lindenmayer DB, Price OF, Williams RJ. 2012. Wildfires, fuel treatment and risk mitigation in Australian eucalypt forests: insights from landscape-scale simulation. J Environ Manag 105:66–75.

    CAS  Article  Google Scholar 

  8. Broncano MJ, Retana J, Rodrigo A. 2005. Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in Northeastern Spain. Plant Ecol 180:47–56.

    Article  Google Scholar 

  9. Brotons L, Aquilué N, de Cáceres M, Fortin M-J, Fall A. 2013. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS One 8:e62392.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Brunson MW, Shindler BA. 2010. Geographic variation in social acceptability of wildland fuels management in the Western United States. Soc Nat Resour 17:661–78.

    Article  Google Scholar 

  11. Castedo-Dorado F, Gómez-Vázquez I, Fernandes PM, Crecente-Campo F. 2012. Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands. For Ecol Manag 275:130–41.

    Article  Google Scholar 

  12. Cochrane MAA, Moran CJA, Wimberly MCA, Baer ADA. 2012. Estimation of wildfire size and risk changes due to fuels treatments. Int J Wildl Fire 21:357–67.

    Article  Google Scholar 

  13. CORINE. 2006. Land-use land-cover database 1:250000. Copenhagen, Denmark: European Environment Agency.

    Google Scholar 

  14. CREAF. 2009. Land cover map of Catalonia, 3rd edn. http://www.creaf.uab.cat/mcsc/usa/index.htm http://www.creaf.uab.cat/mcsc/usa/index.htm.

  15. De Cáceres M, Brotons L, Aquilué N, Fortin M-J. 2013. The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–47.

    Article  Google Scholar 

  16. de Chazal J, Rounsevell MDA. 2009. Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Change 19:306–15.

    Article  Google Scholar 

  17. Díaz-Delgado R, Lloret F, Pons X. 2004. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc Ecol 19:731–45.

    Article  Google Scholar 

  18. Espelta JM, Riba M, Retana J. 1995. Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests influenced by canopy development. J Veg Sci 6:465–72.

    Article  Google Scholar 

  19. Evans AM, Finkral AJ. 2009. From renewable energy to fire risk reduction: a synthesis of biomass harvesting and utilization case studies in US forests. GCB Bioenergy 1:211–19.

    Article  Google Scholar 

  20. Fernandes PM, Botelho HS. 2003. A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildl Fire 12:117.

    Article  Google Scholar 

  21. Finney MA. 2003. Calculation of fire spread rates across random landscapes. Int J Wildl Fire 12:167–74.

    Article  Google Scholar 

  22. Finney MA, Seli RC, McHugh CW, Ager AA, Bahro B, Agee JK. 2007. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int J Wildl Fire 16:712.

    Article  Google Scholar 

  23. Fréjaville T, Curt T. 2015. Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin). Clim Change 129:239–51.

    Article  Google Scholar 

  24. GENCAT. 2014a. Estadístiques forestals. Produccions forestals i incendis. http://agricultura.gencat.cat/ca/departament/dar_estadistiques_observatoris/dar_estructura_produccio/dar_estadistiques_forestals/dar_produccions_forestals_incendis/. Accessed 21/10/2013.

  25. GENCAT. 2014b. Estratègia per promoure l’aprofitament energètic de la biomassa forestal i agrícola. Departament d’Agricultura, Ramaderia, Pesca i Alimentació. Generalitat de Catalunya.

  26. Gonzalez-Olabarria JR, Brotons L, Gritten D, Tudela A, Teres JA. 2012. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildl Fire 21:905–14.

    Article  Google Scholar 

  27. Graham R, Harvey A, Jain T, Tonn J. 1999. Effects of thinning and similar stand treatments on fire behavior in western forests. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-463.

  28. Houtman RM, Montgomery CA, Gagnon AR, Calkin DE, Dietterich TG, Mcgregor S. 2013. Allowing a wildfire to burn: estimating the effect on future fire suppression costs. Int J Wildl Fire 22:871–82. doi:10.1071/WF12157.

    Article  Google Scholar 

  29. Ibañez JJ, Burriel JA. 2010. Mapa de cubiertas del suelo de Cataluña: características de la tercera edición y relación con SIOSE. In: Actas del XIV Congreso Nacional de Tecnologías de la Información Geográfica, Sevilla.

  30. James PMA, Fortin M-J, Sturtevant BR, Fall A, Kneeshaw D. 2010. Modelling spatial interactions among fire, spruce budworm, and logging in the Boreal forest. Ecosystems 14:60–75.

    Article  Google Scholar 

  31. Keeley J, Bond W, Bradstock R, Pausas J, Rundel P. 2012. Fire in mediterranean ecosystems: ecology, evolution and management. Cambridge: Cambridge University Press.

    Google Scholar 

  32. Levers C, Verkerk PJ, Müller D, Verburg PH, Butsic V, Leitão PJ, Lindner M, Kuemmerle T. 2014. Drivers of forest harvesting intensity patterns in Europe. For Ecol Manag 315:160–72.

    Article  Google Scholar 

  33. Loehle C. 2004. Applying landscape principles to fire hazard reduction. For Ecol Manag 198:261–7.

    Article  Google Scholar 

  34. Mason CL, Lippke BR, Zobrist KW, Bloxton TD Jr, Ceder KR, Comnick JM, Mccarter JB, Rogers HK. 2006. Investments in fuel removals to avoid forest fires result in substantial benefits. J For 104:27–31.

    Google Scholar 

  35. McCullagh P, Nelder JA. 1989. Generalized linear models. London: Chapman and Hall.

    Google Scholar 

  36. McIver J, Erickson K, Youngblood A. 2012. Principal short-term findings of the National Fire and Fire Surrogate study. Gen. Tech. Rep. PNW-GTR-860. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  37. McRae DJ, Duchesne LC, Freedman B, Lynham TJ, Woodley S. 2001. Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–60.

    CAS  Article  Google Scholar 

  38. MINECO. 2013. The Spanish renewable energy plan 2011–2020. Ministry of Industry, Energy and Tourism. http://www.minetur.gob.es/energia/en-us/novedades/paginas/per2011-2020voli.aspx. Accessed 12/06/2013.

  39. Minnich RA, Chou Y. 1997. Wildland fire patch dynamics in the chaparral of Southern California and Northern Baja California. Int J Wildl Fire 7:221–48.

    Article  Google Scholar 

  40. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E. 2011. Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–402.

    Article  Google Scholar 

  41. Moreno MV, Conedera M, Chuvieco E, Pezzatti GB. 2014. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22.

    Article  Google Scholar 

  42. Nechodom M, Becker D, Haynes R. 2008. Evolving interdependencies of community and forest health. In: Donoghue E, Sturtevant V, Eds. Forest and community connections. Washington, DC: Resources for the Future. p 91–108.

    Google Scholar 

  43. Ouro G, Pérez-Batallón P, Merino A. 2001. Effects of silvicultural practices on nutrient status in a Pinus radiata plantation: nutrient export by tree removal and nutrient dynamics in decomposing logging residues. Ann For Sci 58:411–22.

    Article  Google Scholar 

  44. Paillet Y, Bergès L, Hjältén J, Ódor P, Avon C, Bernhardt-römermann M, Bijlsma R, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Mészáros I, Sebastià M, Schmidt W, Standovár T, Tóthmérész B, Uotila A, Valladares F, Vellak K, Virtanen R. 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–12.

    Article  PubMed  Google Scholar 

  45. Parisien M-A, Junor DR, Kafka VG. 2007. Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada. Int J Wildl Fire 16:664.

    Article  Google Scholar 

  46. Pausas JG, Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob Ecol Biogeogr 21:1074–82.

    Article  Google Scholar 

  47. Pausas JG, Llovet J, Rodrigo A, Vallejo R. 2008. Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildl Fire 17:713.

    Article  Google Scholar 

  48. Perpiñá C, Alfonso D, Pérez-Navarro A, Peñalvo E, Vargas C, Cárdenas R. 2009. Methodology based on geographic information systems for biomass logistics and transport optimisation. Renew Energy 34:555–65.

    Article  Google Scholar 

  49. Piñol J, Terradas J, Lloret F. 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–57.

    Article  Google Scholar 

  50. Piñol J, Beven K, Viegas DX. 2005. Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecol Model 183:397–409.

    Article  Google Scholar 

  51. Piñol J, Castellnou M, Beven KJ. 2007. Conditioning uncertainty in ecological models: assessing the impact of fire management strategies. Ecol Model 207:34–44.

    Article  Google Scholar 

  52. Price OF, Bradstock RA, Keeley JE, Syphard AD. 2012. The impact of antecedent fire area on burned area in southern California coastal ecosystems. J Environ Manag 113:301–7.

    Article  Google Scholar 

  53. R Core Team. 2014. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/.

  54. Regos A, Aquilué N, Retana J, De Cáceres M, Brotons L. 2014. Using unplanned fires to help suppressing future large fires in Mediterranean forests. PLoS One 9:e94906.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Regos A, D’Amen M, Herrando S, Guisan A, Brotons L. 2015. Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). J Ornithol 156:275–86.

    Article  Google Scholar 

  56. Regos A, D’Amen M, Titeux N, Herrando S, Guisan A, Brotons L. 2016. Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96.

    Article  Google Scholar 

  57. Reiner AL, Vaillant NM, Fites-Kaufman J, Dailey SN. 2009. Mastication and prescribed fire impacts on fuels in a 25-year old ponderosa pine plantation, southern Sierra Nevada. For Ecol Manag 258:2365–72.

    Article  Google Scholar 

  58. Reinhardt ED, Keane RE, Calkin DE, Cohen JD. 2008. Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. For Ecol Manag 256:1997–2006. http://linkinghub.elsevier.com/retrieve/pii/S0378112708006944.

  59. Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G. 2006. A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68.

    Article  Google Scholar 

  60. Stellmes M, Röder A, Udelhoven T, Hill J. 2013. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. Land Use Policy 30:685–702.

    Article  Google Scholar 

  61. Stephens SL. 1998. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For Ecol Manag 105:21–35.

    Article  Google Scholar 

  62. Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, Harrington M, Keeley JE, Knapp EE, McIver JD, Metlen K, Skinner CN, Youngblood A. 2009. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol Appl 19:305–20.

    Article  PubMed  Google Scholar 

  63. Stephens SL, James D, Boerner J, Fettig J, Joseph B, Kennedy L, Schwilk DW. 2012. The effects of forest fuel-reduction treatments in the United States. Bioscience 62:549–60.

    Article  Google Scholar 

  64. Sturtevant BR, Miranda BR, Yang J, He HS, Gustafson EJ, Scheller RM. 2009. Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk. Ecosystems 12:445–61.

    Article  Google Scholar 

  65. Turco M, Llasat MC, Tudela A, Castro X, Provenzale A. 2013. Brief communication decreasing fires in a mediterranean region (1970-2010, NE Spain). Nat Hazards Earth Syst Sci 13:649–52.

    Article  Google Scholar 

  66. Vallecillo S, Brotons L, Thuiller W. 2009. Dangers of predicting bird species distributions in response to land-cover changes. Ecol Appl 19:538–49.

    Article  PubMed  Google Scholar 

  67. Van Wagtendonk JW. 1996. Use of a deterministic fire growth model to test fuel treatments. In: Sierra Nevada Ecosystem Project: final report to congress, Vol. II. Final report to congress. Davis: Centers for Water and Wildland Resources. University of California, pp 1155–66.

  68. Verón SR, Jobbágy EG, Di Bella CM, Paruelo JM, Jackson RB. 2012. Assessing the potential of wildfires as a sustainable bioenergy opportunity. GCB Bioenergy 4:634–41.

    Article  Google Scholar 

  69. Vila-Cabrera A, Martinez-Vilalta J, Vayreda J, Retana J. 2011. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–72.

    Article  PubMed  Google Scholar 

  70. Villaescusa R, Díaz R. 1998. Segundo Inventario Forestal Nacional (1986–1996). Madrid: España. Ministerio de Medio Ambiente, ICONA.

    Google Scholar 

  71. Villanueva JA. 2005. Tercer Inventario Forestal Nacional (1997–2007). Madrid: España. Ministerio de Medio Ambiente, ICONA.

    Google Scholar 

  72. Wendland KJ, Lewis DJ, Alix-Garcia J, Ozdogan M, Baumann M, Radeloff VC. 2011. Regional- and district-level drivers of timber harvesting in European Russia after the collapse of the Soviet Union. Glob Environ Change 21:1290–300.

    Article  Google Scholar 

  73. Winter GJ, Vogt C, Fried JS. 2002. Fuel treatments at the wildland-urban interface: common concerns in diverse regions. J For 100:15–21.

    Google Scholar 

Download references

Acknowledgments

This work received financial support under the research Projects, FORESTCAST (CGL2014-59742) and BIONOVEL (CGL2011-29539/BOS), funded by the Spanish Ministry of Education and Science, and it is a contribution to the FORESTERRA-ERANET Project INFORMED. Lluís Brotons, Núria Aquilué, and Adrián Regos benefited from the NEWFORESTS project (PIRSES-GA-2013-612645). Ignacio Lopez and Mireia Codina were supported by the strategic project of the MED programme PROFORBIOMED (1S-MED10-009) co-funded by the European Regional Development Fund. We thank the two anonymous referees for their valuable comments and constructive suggestions on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrián Regos.

Additional information

Author contributions

AR, NU, and LB conceived the study, implemented the model, and read the manuscript written. All authors analyzed the data, contributed to the conceptual development of the model, and commented critically and substantially on the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (DOC 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Regos, A., Aquilué, N., López, I. et al. Synergies Between Forest Biomass Extraction for Bioenergy and Fire Suppression in Mediterranean Ecosystems: Insights from a Storyline-and-Simulation Approach. Ecosystems 19, 786–802 (2016). https://doi.org/10.1007/s10021-016-9968-z

Download citation

Keywords

  • fire suppression
  • forest fires
  • forest harvesting
  • MEDFIRE fire-succession model
  • Mediterranean basin
  • process-based model
  • renewable energy
  • scenarios-based analysis
  • landscape simulations