Ecosystems

, Volume 19, Issue 5, pp 786–802 | Cite as

Synergies Between Forest Biomass Extraction for Bioenergy and Fire Suppression in Mediterranean Ecosystems: Insights from a Storyline-and-Simulation Approach

  • Adrián Regos
  • Nuria Aquilué
  • Ignacio López
  • Mireia Codina
  • Javier Retana
  • Lluís Brotons
Article

Abstract

Increases in fire impacts over many regions of the world have led to large-scale investments in fire-suppression efforts. There is increasing recognition that biomass extraction for energy purposes may become an important forest-management practice in fire-prone ecosystems. However, at present, very few studies have explicitly assessed biomass extraction as a fuel treatment at landscape scale. Here, we use a landscape fire-succession model in Catalonia (NE Spain) to quantitatively evaluate the potential effects of a biomass extraction-based strategy on essential fire-regime attributes after considering different levels of fire suppression, biomass extraction intensity, and spatial allocation of such efforts. Our simulations indicated that the effectiveness (area suppressed in relation to expected area to burn) at suppressing wildfires was determined by extraction intensity, spatial allocation of the extraction effort, and the fire-suppression levels involved. Indeed, the highest suppressed-area values were found with lower harvesting intensities, especially under high fire-suppression capabilities and strategies focused on bioenergy goals (figures close to 0.7). However, the leverage (area suppressed in relation to managed area) was higher when the treatments were based on the fire-prevention strategy and focused on high-fire-risk areas (up to 0.45) than with treatment designed for energy reasons (lower than 0.15). We conclude that biomass extraction for energy purposes has the potential to induce changes in fire regimes and can therefore be considered a cost-effective landscape-level fuel-reduction treatment. However, our results suggest that large-scale biomass extraction may be needed if significant changes in fire regimes are to be expected.

Keywords

fire suppression forest fires forest harvesting MEDFIRE fire-succession model Mediterranean basin process-based model renewable energy scenarios-based analysis landscape simulations 

Supplementary material

10021_2016_9968_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 30 kb)
10021_2016_9968_MOESM2_ESM.doc (53 kb)
Supplementary material 2 (DOC 53 kb)

References

  1. Abbas D, Current D, Ryans M, Taff S, Hoganson H, Brooks KN. 2011. Harvesting forest biomass for energy—an alternative to conventional fuel treatments: trials in the Superior National Forest, USA. Biomass Bioenergy 35:4557–64.CrossRefGoogle Scholar
  2. Agee JK, Skinner CN. 2005. Basic principles of forest fuel reduction treatments. For Ecol Manag 211:83–96.CrossRefGoogle Scholar
  3. Alcamo J, Kreileman GJJ, Bollen JC, Van den Born G, Gerlagh R, Krol MS, Toet AM, de Vries HJ. 1996. Baseline scenarios of global environmental change. Glob Environ Change 6:261–303.CrossRefGoogle Scholar
  4. Alvarez A, Gracia M, Vayreda J, Retana J. 2012. Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manag 270:282–90.CrossRefGoogle Scholar
  5. Badia A, Serra P, Modugno S. 2011. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland-urban interface areas. Appl Geogr 31:930–40.CrossRefGoogle Scholar
  6. Becker DR, Larson D, Lowell EC. 2009. Financial considerations of policy options to enhance biomass utilization for reducing wildfire hazards. For Policy Econ 11:628–35.CrossRefGoogle Scholar
  7. Bradstock RA, Cary GJ, Davies I, Lindenmayer DB, Price OF, Williams RJ. 2012. Wildfires, fuel treatment and risk mitigation in Australian eucalypt forests: insights from landscape-scale simulation. J Environ Manag 105:66–75.CrossRefGoogle Scholar
  8. Broncano MJ, Retana J, Rodrigo A. 2005. Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in Northeastern Spain. Plant Ecol 180:47–56.CrossRefGoogle Scholar
  9. Brotons L, Aquilué N, de Cáceres M, Fortin M-J, Fall A. 2013. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS One 8:e62392.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brunson MW, Shindler BA. 2010. Geographic variation in social acceptability of wildland fuels management in the Western United States. Soc Nat Resour 17:661–78.CrossRefGoogle Scholar
  11. Castedo-Dorado F, Gómez-Vázquez I, Fernandes PM, Crecente-Campo F. 2012. Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands. For Ecol Manag 275:130–41.CrossRefGoogle Scholar
  12. Cochrane MAA, Moran CJA, Wimberly MCA, Baer ADA. 2012. Estimation of wildfire size and risk changes due to fuels treatments. Int J Wildl Fire 21:357–67.CrossRefGoogle Scholar
  13. CORINE. 2006. Land-use land-cover database 1:250000. Copenhagen, Denmark: European Environment Agency.Google Scholar
  14. De Cáceres M, Brotons L, Aquilué N, Fortin M-J. 2013. The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–47.CrossRefGoogle Scholar
  15. de Chazal J, Rounsevell MDA. 2009. Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Change 19:306–15.CrossRefGoogle Scholar
  16. Díaz-Delgado R, Lloret F, Pons X. 2004. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc Ecol 19:731–45.CrossRefGoogle Scholar
  17. Espelta JM, Riba M, Retana J. 1995. Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests influenced by canopy development. J Veg Sci 6:465–72.CrossRefGoogle Scholar
  18. Evans AM, Finkral AJ. 2009. From renewable energy to fire risk reduction: a synthesis of biomass harvesting and utilization case studies in US forests. GCB Bioenergy 1:211–19.CrossRefGoogle Scholar
  19. Fernandes PM, Botelho HS. 2003. A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildl Fire 12:117.CrossRefGoogle Scholar
  20. Finney MA. 2003. Calculation of fire spread rates across random landscapes. Int J Wildl Fire 12:167–74.CrossRefGoogle Scholar
  21. Finney MA, Seli RC, McHugh CW, Ager AA, Bahro B, Agee JK. 2007. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int J Wildl Fire 16:712.CrossRefGoogle Scholar
  22. Fréjaville T, Curt T. 2015. Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin). Clim Change 129:239–51.CrossRefGoogle Scholar
  23. GENCAT. 2014b. Estratègia per promoure l’aprofitament energètic de la biomassa forestal i agrícola. Departament d’Agricultura, Ramaderia, Pesca i Alimentació. Generalitat de Catalunya.Google Scholar
  24. Gonzalez-Olabarria JR, Brotons L, Gritten D, Tudela A, Teres JA. 2012. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildl Fire 21:905–14.CrossRefGoogle Scholar
  25. Graham R, Harvey A, Jain T, Tonn J. 1999. Effects of thinning and similar stand treatments on fire behavior in western forests. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-463.Google Scholar
  26. Houtman RM, Montgomery CA, Gagnon AR, Calkin DE, Dietterich TG, Mcgregor S. 2013. Allowing a wildfire to burn: estimating the effect on future fire suppression costs. Int J Wildl Fire 22:871–82. doi:10.1071/WF12157.CrossRefGoogle Scholar
  27. Ibañez JJ, Burriel JA. 2010. Mapa de cubiertas del suelo de Cataluña: características de la tercera edición y relación con SIOSE. In: Actas del XIV Congreso Nacional de Tecnologías de la Información Geográfica, Sevilla.Google Scholar
  28. James PMA, Fortin M-J, Sturtevant BR, Fall A, Kneeshaw D. 2010. Modelling spatial interactions among fire, spruce budworm, and logging in the Boreal forest. Ecosystems 14:60–75.CrossRefGoogle Scholar
  29. Keeley J, Bond W, Bradstock R, Pausas J, Rundel P. 2012. Fire in mediterranean ecosystems: ecology, evolution and management. Cambridge: Cambridge University Press.Google Scholar
  30. Levers C, Verkerk PJ, Müller D, Verburg PH, Butsic V, Leitão PJ, Lindner M, Kuemmerle T. 2014. Drivers of forest harvesting intensity patterns in Europe. For Ecol Manag 315:160–72.CrossRefGoogle Scholar
  31. Loehle C. 2004. Applying landscape principles to fire hazard reduction. For Ecol Manag 198:261–7.CrossRefGoogle Scholar
  32. Mason CL, Lippke BR, Zobrist KW, Bloxton TD Jr, Ceder KR, Comnick JM, Mccarter JB, Rogers HK. 2006. Investments in fuel removals to avoid forest fires result in substantial benefits. J For 104:27–31.Google Scholar
  33. McCullagh P, Nelder JA. 1989. Generalized linear models. London: Chapman and Hall.CrossRefGoogle Scholar
  34. McIver J, Erickson K, Youngblood A. 2012. Principal short-term findings of the National Fire and Fire Surrogate study. Gen. Tech. Rep. PNW-GTR-860. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.Google Scholar
  35. McRae DJ, Duchesne LC, Freedman B, Lynham TJ, Woodley S. 2001. Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–60.CrossRefGoogle Scholar
  36. MINECO. 2013. The Spanish renewable energy plan 2011–2020. Ministry of Industry, Energy and Tourism. http://www.minetur.gob.es/energia/en-us/novedades/paginas/per2011-2020voli.aspx. Accessed 12/06/2013.
  37. Minnich RA, Chou Y. 1997. Wildland fire patch dynamics in the chaparral of Southern California and Northern Baja California. Int J Wildl Fire 7:221–48.CrossRefGoogle Scholar
  38. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E. 2011. Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–402.CrossRefGoogle Scholar
  39. Moreno MV, Conedera M, Chuvieco E, Pezzatti GB. 2014. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22.CrossRefGoogle Scholar
  40. Nechodom M, Becker D, Haynes R. 2008. Evolving interdependencies of community and forest health. In: Donoghue E, Sturtevant V, Eds. Forest and community connections. Washington, DC: Resources for the Future. p 91–108.Google Scholar
  41. Ouro G, Pérez-Batallón P, Merino A. 2001. Effects of silvicultural practices on nutrient status in a Pinus radiata plantation: nutrient export by tree removal and nutrient dynamics in decomposing logging residues. Ann For Sci 58:411–22.CrossRefGoogle Scholar
  42. Paillet Y, Bergès L, Hjältén J, Ódor P, Avon C, Bernhardt-römermann M, Bijlsma R, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Mészáros I, Sebastià M, Schmidt W, Standovár T, Tóthmérész B, Uotila A, Valladares F, Vellak K, Virtanen R. 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–12.CrossRefPubMedGoogle Scholar
  43. Parisien M-A, Junor DR, Kafka VG. 2007. Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada. Int J Wildl Fire 16:664.CrossRefGoogle Scholar
  44. Pausas JG, Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob Ecol Biogeogr 21:1074–82.CrossRefGoogle Scholar
  45. Pausas JG, Llovet J, Rodrigo A, Vallejo R. 2008. Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildl Fire 17:713.CrossRefGoogle Scholar
  46. Perpiñá C, Alfonso D, Pérez-Navarro A, Peñalvo E, Vargas C, Cárdenas R. 2009. Methodology based on geographic information systems for biomass logistics and transport optimisation. Renew Energy 34:555–65.CrossRefGoogle Scholar
  47. Piñol J, Terradas J, Lloret F. 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–57.CrossRefGoogle Scholar
  48. Piñol J, Beven K, Viegas DX. 2005. Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecol Model 183:397–409.CrossRefGoogle Scholar
  49. Piñol J, Castellnou M, Beven KJ. 2007. Conditioning uncertainty in ecological models: assessing the impact of fire management strategies. Ecol Model 207:34–44.CrossRefGoogle Scholar
  50. Price OF, Bradstock RA, Keeley JE, Syphard AD. 2012. The impact of antecedent fire area on burned area in southern California coastal ecosystems. J Environ Manag 113:301–7.CrossRefGoogle Scholar
  51. R Core Team. 2014. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/.
  52. Regos A, Aquilué N, Retana J, De Cáceres M, Brotons L. 2014. Using unplanned fires to help suppressing future large fires in Mediterranean forests. PLoS One 9:e94906.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Regos A, D’Amen M, Herrando S, Guisan A, Brotons L. 2015. Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). J Ornithol 156:275–86.CrossRefGoogle Scholar
  54. Regos A, D’Amen M, Titeux N, Herrando S, Guisan A, Brotons L. 2016. Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96.CrossRefGoogle Scholar
  55. Reiner AL, Vaillant NM, Fites-Kaufman J, Dailey SN. 2009. Mastication and prescribed fire impacts on fuels in a 25-year old ponderosa pine plantation, southern Sierra Nevada. For Ecol Manag 258:2365–72.CrossRefGoogle Scholar
  56. Reinhardt ED, Keane RE, Calkin DE, Cohen JD. 2008. Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. For Ecol Manag 256:1997–2006. http://linkinghub.elsevier.com/retrieve/pii/S0378112708006944.
  57. Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G. 2006. A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68.CrossRefGoogle Scholar
  58. Stellmes M, Röder A, Udelhoven T, Hill J. 2013. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. Land Use Policy 30:685–702.CrossRefGoogle Scholar
  59. Stephens SL. 1998. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For Ecol Manag 105:21–35.CrossRefGoogle Scholar
  60. Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, Harrington M, Keeley JE, Knapp EE, McIver JD, Metlen K, Skinner CN, Youngblood A. 2009. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol Appl 19:305–20.CrossRefPubMedGoogle Scholar
  61. Stephens SL, James D, Boerner J, Fettig J, Joseph B, Kennedy L, Schwilk DW. 2012. The effects of forest fuel-reduction treatments in the United States. Bioscience 62:549–60.CrossRefGoogle Scholar
  62. Sturtevant BR, Miranda BR, Yang J, He HS, Gustafson EJ, Scheller RM. 2009. Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk. Ecosystems 12:445–61.CrossRefGoogle Scholar
  63. Turco M, Llasat MC, Tudela A, Castro X, Provenzale A. 2013. Brief communication decreasing fires in a mediterranean region (1970-2010, NE Spain). Nat Hazards Earth Syst Sci 13:649–52.CrossRefGoogle Scholar
  64. Vallecillo S, Brotons L, Thuiller W. 2009. Dangers of predicting bird species distributions in response to land-cover changes. Ecol Appl 19:538–49.CrossRefPubMedGoogle Scholar
  65. Van Wagtendonk JW. 1996. Use of a deterministic fire growth model to test fuel treatments. In: Sierra Nevada Ecosystem Project: final report to congress, Vol. II. Final report to congress. Davis: Centers for Water and Wildland Resources. University of California, pp 1155–66.Google Scholar
  66. Verón SR, Jobbágy EG, Di Bella CM, Paruelo JM, Jackson RB. 2012. Assessing the potential of wildfires as a sustainable bioenergy opportunity. GCB Bioenergy 4:634–41.CrossRefGoogle Scholar
  67. Vila-Cabrera A, Martinez-Vilalta J, Vayreda J, Retana J. 2011. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–72.CrossRefPubMedGoogle Scholar
  68. Villaescusa R, Díaz R. 1998. Segundo Inventario Forestal Nacional (1986–1996). Madrid: España. Ministerio de Medio Ambiente, ICONA.Google Scholar
  69. Villanueva JA. 2005. Tercer Inventario Forestal Nacional (1997–2007). Madrid: España. Ministerio de Medio Ambiente, ICONA.Google Scholar
  70. Wendland KJ, Lewis DJ, Alix-Garcia J, Ozdogan M, Baumann M, Radeloff VC. 2011. Regional- and district-level drivers of timber harvesting in European Russia after the collapse of the Soviet Union. Glob Environ Change 21:1290–300.CrossRefGoogle Scholar
  71. Winter GJ, Vogt C, Fried JS. 2002. Fuel treatments at the wildland-urban interface: common concerns in diverse regions. J For 100:15–21.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.CEMFOR-CTFC, InForest Joint Research UnitCSIC-CTFC-CREAFSolsonaSpain
  2. 2.Centre d’étude de la forêt (CEF)MontrealCanada
  3. 3.CTFC- Forest Science Center of Catalonia –Forest Production Timber and BioenergySolsonaSpain
  4. 4.CREAFCerdanyola del VallèsSpain
  5. 5.Autonomous University of BarcelonaCerdanyola del VallèsSpain
  6. 6.CSICCerdanyola del VallèsSpain

Personalised recommendations