Skip to main content
Log in

Leaf Litter Fuels Methanogenesis Throughout Decomposition in a Forested Peatland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Decomposing leaf litter is a large supply of energy and nutrients for soil microorganisms. How long decaying leaves continue to fuel anaerobic microbial activity in wetland ecosystems is poorly understood. Here, we compare leaf litter from 15 tree species with different growth forms (angiosperms and gymnosperms, deciduous, and longer life span), using litterbags positioned for up to 4 years in a forested peatland in New York State. Periodically, we incubated partially decayed residue per species with fresh soil to assess its ability to fuel microbial methane (CH4) production and concomitant anaerobic carbon dioxide (CO2) production. Decay rates varied by leaf type: deciduous angiosperm > evergreen gymnosperm > deciduous gymnosperm. Decay rates were slower in leaf litter with a large concentration of lignin. Soil with residue of leaves decomposed for 338 days had greater rates of CH4 production (5.8 µmol g−1 dry mass d−1) than less decomposed (<0.42 µmol g−1 dry mass d−1) or more decomposed (2.1 µmol g−1 dry mass d−1) leaf residue. Species-driven differences in their ability to fuel CH4 production were evident throughout the study, whereas concomitant rates of CO2 production were more similar among species and declined with degree of decomposition. Methane production rates exhibited a positive correlation with pectin and the rate of pectin decomposition. This link between leaf litter decay rates, biochemical components in leaves, and microorganisms producing greenhouse gases should improve predictions of CH4 production in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M. 2006. Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–35.

    Article  PubMed  Google Scholar 

  • Berg B. 2014. Decomposition patterns for foliar litter—a theory for influencing factors. Soil Biol Biochem 78:222–32.

    Article  CAS  Google Scholar 

  • Berg B, Ekbohm G, McClaugherty C. 1984. Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest. IV. Can J Bot 62:2540–50.

    Article  CAS  Google Scholar 

  • Bou Daher F, Braybrook SA. 2015. How to let go: pectin and plant cell adhesion. Front Plant Sci 6:253.

    Google Scholar 

  • Carpita NC. 1984. Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23:1089–93.

    Article  CAS  Google Scholar 

  • Chang SX, Robison DJ. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. For Ecol Manag 181:331–8.

    Article  Google Scholar 

  • Chapin FS, Bret-Harte MS, Hobbie SE, Zhong H. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–58.

    Article  Google Scholar 

  • Chapman HD, Morris VJ, Selvendran RR, O’Neill MA. 1987. Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples. Carbohyd Res 165:53–68.

    Article  CAS  Google Scholar 

  • Chen FS, Duncan DS, Hu XF, Liang C. 2014. Exogenous nutrient manipulations alter endogenous extractability of carbohydrates in decomposing foliar litters under a typical mixed forest of subtropics. Geoderma 214:19–24.

    Article  Google Scholar 

  • Coldwell BB, DeLong WA. 1950. Studies of the composition of deciduous forest tree leaves before and after partial decomposition. Sci Agric 30:456–66.

    Google Scholar 

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK. 2004. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512.

    Article  PubMed  Google Scholar 

  • Coles JRP, Yavitt JB. 2004. Linking belowground carbon allocation to anaerobic CH4 and CO2 production in a forested peatland, New York State. Geomicrobiol J 21:445–55.

    Article  CAS  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • Cosgrove DJ. 2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–61.

    Article  CAS  PubMed  Google Scholar 

  • Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P. 1998. Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–95.

    Article  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Change Biol 21:388–95.

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–6.

    Article  CAS  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372–80.

    Article  PubMed  Google Scholar 

  • Gupta NS, Yang H, Leng Q, Briggs DE, Cody GD, Summons RE. 2009. Diagenesis of plant biopolymers: decay and macromolecular preservation of Metasequoia. Org Geochem 40:802–9.

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen HU, Burke IC, Parton WJ, Hart SC, Currie WS. 2009. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–38.

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218.

    Article  Google Scholar 

  • Heijmans MMPD, van der Knaap YAM, Holmgren M, Limpens J. 2013. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob Change Biol 19:2240–50.

    Article  Google Scholar 

  • Hobbie SE. 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–63.

    Article  PubMed  Google Scholar 

  • Hopkins DW, Webster EA, Chudek JA, Halpin C. 2001. Decomposition in soil of tobacco plants with genetic modifications to lignin biosynthesis. Soil Biol Biochem 33:1455–62.

    Article  CAS  Google Scholar 

  • Jenkins CC, Suberkropp K. 1995. The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshw Biol 33:245–53.

    Article  CAS  Google Scholar 

  • Kasmi AE, Rajasekharan S, Ragsdale SW. 1994. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum. Biochemistry 33:11217–24.

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Hamilton JT, Braß M, Röckmann T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–91.

    Article  CAS  PubMed  Google Scholar 

  • Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K. 2011. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052–62.

    Article  PubMed  Google Scholar 

  • Kok CJ, Haverkamp W, Van der Aa HA. 1992. Influence of pH on the growth and leaf-maceration ability of fungi involved in the decomposition of floating leaves of Nymphaea alba in an acid water. J Gen Microbiol 138:103–8.

    Article  CAS  Google Scholar 

  • Küsel K, Wagner C, Drake HL. 1999. Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol Ecol 29:91–103.

    Article  Google Scholar 

  • Latter PM, Cragg JB. 1967. The decomposition of Juncus squarrosus leaves and microbiological changes in the profile of Juncus moor. J Ecol 55:465–82.

    Article  Google Scholar 

  • Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, Inagaki F, Hinrichs K-U, Teske A. 2010. Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol J 27:183–211.

    Article  CAS  Google Scholar 

  • Lindo Z, Gonzalez A. 2010. The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–27.

    Article  Google Scholar 

  • Maanen AV, Gourbière F. 1997. Host and geographical distribution of Verticicladium trifidum, Thysanophora penicillioides, and similar fungi on decaying coniferous needles. Can J Bot 75:699–710.

    Article  Google Scholar 

  • Makita N, Fujii S. 2015. Tree species effects on microbial respiration from decomposing leaf and fine root litter. Soil Biol Biochem 88:39–47.

    Article  CAS  Google Scholar 

  • McIver EE, Basinger JF. 1999. Early Tertiary floral evolution in the Canadian high Arctic. Ann MO Bot Gard 86:523–45.

    Article  Google Scholar 

  • McLeod AR, Newsham KK, Fry SC. 2007. Elevated UV-B radiation modifies the extractability of carbohydrates from leaf litter of Quercus robur. Soil Biol Biochem 39:116–26.

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.

    Article  CAS  Google Scholar 

  • Moore PD. 2002. The future of cool temperate bogs. Environ Conserv 29:3–20.

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Siltanen M, Kozak LM. 2008. Litter decomposition and nitrogen and phosphorus dynamics in peatlands and uplands over 12 years in central Canada. Oecologia 157:317–25.

    Article  PubMed  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN. 2013. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19.

    Article  CAS  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A. 2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–67.

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kull O. 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 18:467–79.

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Valladares F. 2006. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–47.

    Article  Google Scholar 

  • Nilsson M, Öquist M. 2009. Partitioning litter mass loss into carbon dioxide and methane in peatland ecosystems. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD, Eds. Carbon cycling in Northern peatlands. Washington: American Geophysical Union. p 131–44.

    Chapter  Google Scholar 

  • Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–31.

    Article  Google Scholar 

  • Opsahl S, Benner R. 1995. Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochim Cosmochim Acta 59:4889–904.

    Article  CAS  Google Scholar 

  • Ordoñez JC, Van Bodegom PM, Witte JP, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–49.

    Article  Google Scholar 

  • Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–68.

    Article  CAS  PubMed  Google Scholar 

  • Pellerin S, Lavoie C. 2003. Recent expansion of jack pine in peatlands of southeastern Québec: a paleoecological study. Ecoscience 10:247–57.

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter N, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.

    Article  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA. 2009. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–102.

    Article  CAS  Google Scholar 

  • Rahman MM, Tsukamoto J. 2013. Leaf traits, litter decomposability and forest floor dynamics in an evergreen-and a deciduous-broadleaved forest in warm temperate Japan. Forestry 86:441–51.

    Article  Google Scholar 

  • Riggs CE, Hobbie SE, Cavender-Bares J, Savage JA, Wei X. 2015. Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions. Oecologia 179:573–84.

    Article  PubMed  Google Scholar 

  • Robroek BJM, Jassey VEJ, Kox MAR, Berendsen RL, Mills RTE, Cécillon L, Puissant J, Meima-Franke M, Bakker PAHM, Bodelier PLE. 2015. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. J Ecol 103:925–34.

    Article  CAS  Google Scholar 

  • Saha BC. 2003. Hemicellulose bioconversion. J Ind Microbiol Biot 30:279–91.

    Article  CAS  Google Scholar 

  • Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31.

    Article  PubMed  Google Scholar 

  • Schädel C, Blöchl A, Richter A, Hoch G. 2010. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 48:1–8.

    Article  PubMed  Google Scholar 

  • Schink B, Zeikus JG. 1982. Microbial ecology of pectin decomposition in anoxic lake sediments. J Gen Microbiol 128:393–404.

    CAS  Google Scholar 

  • Shevchik VE, Hugouvieux-Cotte-Pattat N. 1997. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol 24:1285–301.

    Article  CAS  PubMed  Google Scholar 

  • Sundh I, Nilsson M, Granberg G, Svensson BH. 1994. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb Ecol 27:253–65.

    Article  CAS  PubMed  Google Scholar 

  • Taylor KA. 1995. A simple colormetric assay for muramic acid and acetic acid. Appl Biochem Biotechnol 56:49–58.

    Article  Google Scholar 

  • Treat CC, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Roy Chowdhury T, Richter A, Šantrůčková H, Schädel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP. 2015. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Change Biol 21:2787–803.

    Article  Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64.

    Article  Google Scholar 

  • Van Arendonk JJCM, Poorter H. 1994. The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17:963–70.

    Article  CAS  Google Scholar 

  • Van Soest PJ. 1994. Nutritional ecology of the ruminant. Ithaca: Cornell University Press.

    Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS. 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–20.

    Article  Google Scholar 

  • Westoby M. 1999. Generalization in functional plant ecology: the species sampling problem, plant ecology strategy schemes, and phylogeny. In: Pugnaire FI, Valladares F, Eds. Handbook of functional plant ecology. New York: Marcel Dekker, Inc. p 847–72.

    Google Scholar 

  • Witkamp M. 1966. Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47:194–201.

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428:821–7.

    Article  CAS  PubMed  Google Scholar 

  • Yavitt JB, Seidman-Zager M. 2006. Methanogenic conditions in northern peat soils. Geomicrobiol J 23:119–27.

    Article  CAS  Google Scholar 

  • Yavitt JB, Williams CJ. 2015a. Conifer litter identity regulates anaerobic microbial activity in wetland soils via variation in leaf litter chemical composition. Geoderma 243:141–8.

    Article  Google Scholar 

  • Yavitt JB, Williams CJ. 2015b. Linking tree species identity to anaerobic microbial activity in a forested wetland soil via leaf litter decomposition and leaf carbon fractions. Plant Soil 390:293–305.

    Article  CAS  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK. 1997. Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316.

    Article  CAS  Google Scholar 

  • Zinder SH. 1993. Physiological ecology of methanogens. In: Ferry JG, Ed. Methanogenesis: ecology, physiology, biochemistry and genetics. New York: Chapman and Hall. p 128–206.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by a US Department of Agriculture, National Institute of Food and Agriculture, Hatch grant (Grant No. NYC-147498). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the National Institute of Food and Agriculture (NIFA) or the United States Department of Agriculture (USDA). We also appreciate support from the Hunter R. Rawlings III Cornell Presidential Research Scholars (RCPRS) program at Cornell University. Several undergraduate students at Cornell provided wonderful assistance with the biochemical analyses and gas production measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Yavitt.

Additional information

Author's contributions

AKH and JBY conceived and designed the study; EMC and AKH collected the data; JCB analyzed the data; EMC and JBY wrote the paper with inputs from AKH and JCB.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corteselli, E.M., Burtis, J.C., Heinz, A.K. et al. Leaf Litter Fuels Methanogenesis Throughout Decomposition in a Forested Peatland. Ecosystems 20, 1217–1232 (2017). https://doi.org/10.1007/s10021-016-0105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0105-9

Keywords

Navigation