Skip to main content

Advertisement

Log in

Detecting Multiple States of Trophic Connectivity Between Mangroves and Salt Marshes

  • Published:
Ecosystems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The productivity gradient between adjacent habitats can fluctuate over time due to seasonal cycles and lead to both habitats being alternately subsidized. Although this process is well known for prey subsidies in stream-riparian forest ecotones, few studies are available for other systems or subsidy types. Moreover, the effects of transport intensity on this expected alternate subsidy exchange are still poorly understood. We assessed whether subsidy input and allochthonous carbon assimilation by resident benthic invertebrates alternated between adjacent mangroves and salt marshes during peaks of detritus productivity (summer and winter, respectively) in a subtropical estuary, by using detritus trapping techniques and stable isotope ratios. Sampling was performed simultaneously in the sheltered (inner sector) and exposed (outer sector) regions of the estuary to assess the influence of different physical conditions on the intensity of subsidy flow. Transport of mangrove litter into the salt marsh occurred mainly in the summer in both sectors; however, most of the litter remained trapped in the marsh boundary. The mixing model also showed that there was little influence of allochthonous carbon in the diet of salt marsh benthic invertebrates. Marsh litter supply to mangroves did not vary significantly between seasons but was significantly higher in the outer than in the inner sector. Likewise, the mixing model showed great contribution of salt marsh carbon to the diet of benthic invertebrates from the outer-sector mangroves, whereas autochthonous carbon predominated in those from the inner mangroves. Our findings reinforce the model that trophic connectivity relies on the relative proportion of allochthonous (subsidy) and autochthonous resources rather than only on asymmetric productivity between habitats. Differences in the proportion of resources result from interaction among productivity, permeability, and transport vectors that lead to many states of trophic connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bach SD, Thayer GW, LaCroix MW. 1986. Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 28:265–78.

    Article  Google Scholar 

  • Bouillon S, Dahdouh-Guebas F, Rao AVVS, Koedam N, Dehairs F. 2003. Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–9. doi:10.1023/A:1025411506526.

    Article  CAS  Google Scholar 

  • Bouillon S, Moens T, Overmeer I, Koedam N, Dehairs F. 2004. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Mar Ecol Prog Ser 278:77–88. doi:10.3354/meps278077.

    Article  CAS  Google Scholar 

  • Carabel S, Godínez-Domínguez E, Verísimo P, Fernández L, Freire J. 2006. An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336:254–61. doi:10.1016/j.jembe.2006.06.001.

    Article  CAS  Google Scholar 

  • Catenazzi A, Donnelly MA. 2007. The Ulva connection: marine algae subsidize terrestrial predators in coastal Peru. Oikos 116:75–86. doi:10.1111/j.2006.0030-1299.15230.x.

    Article  Google Scholar 

  • Connolly RM, Gorman D, Guest MA. 2005. Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144:684–91. doi:10.1007/s00442-005-0167-4.

    Article  PubMed  Google Scholar 

  • Cunha SR, Asmus M, Costa CSB. 2005. Production dynamics of Spartina alterniflora salt marshes in the estuary of Patos Lagoon (RS, Brazil): A simulation model approach. Braz J Aquat Sci Technol 9:75–85. doi:10.14210/bjast.v9n2.p75-85.

    Article  Google Scholar 

  • Dame RF. 1982. The flux of floating macrodetritus in the North inlet estuarine ecosystem. Estuar Coast Shelf Sci 15:337–44. doi:10.1016/0272-7714(82)90067-1.

    Article  Google Scholar 

  • Darby FA, Turner RE. 2008. Below- and aboveground Spartina alterniflora production in a Louisiana salt marsh. Estuar Coasts 31:223–31. doi:10.1007/s12237-007-9014-7.

    Article  CAS  Google Scholar 

  • de Lecea AM, Smit AJ, Fennessy ST. 2011. The effects of freeze/thaw periods and drying methods on isotopic and elemental carbon and nitrogen in marine organisms, raising questions on sample preparation. Rapid Commun Mass Spectrom 25:3640–9. doi:10.1002/rcm.5265.

    Article  PubMed  Google Scholar 

  • de Jorge VN, van Beusekom JEE. 1995. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol Oceanogr 40:776–8. doi:10.4319/lo.1995.40.4.0776.

    Article  Google Scholar 

  • Doyle RD. 2001. Effects of waves on the early growth of Vallisneria americana. Freshw Biol 46:389–97. doi:10.1046/j.1365-2427.2001.00668.x.

    Article  Google Scholar 

  • Giery ST, Lemoine NP, Hammerschlag-Peyer CM, Abbey-Lee RN, Layman CA. 2013. Bidirectional trophic linkages couple canopy and understorey food webs. Funct Ecol 27:1436–41. doi:10.1111/1365-2435.12139.

    Article  Google Scholar 

  • Green MO, Coco G. 2014. Review of wave-driven sediment resuspension and transport in estuaries. Rev Geophys 52:77–117. doi:10.1002/2013RG000437.

    Article  Google Scholar 

  • Guest MA, Connolly RM. 2004. Fine-scale movement and assimilation of carbon in saltmarsh and mangrove habitat by resident animals. Aquat Ecol 38:599–609. doi:10.1007/s10452-004-0442-1.

    Article  CAS  Google Scholar 

  • Hemminga MA, Cattrijsse A, Wielemaker A. 1996. Bedload and nearbed detritus transport in a tidal saltmarsh creek. Estuar Coast Shelf Sci 42:55–62. doi:10.1006/ecss.1996.0005.

    Article  CAS  Google Scholar 

  • Hemminga MA, Slim FJ, Kazungu J, Ganssen GM, Nieuwenhuize J, Kruyt NM. 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar Ecol Prog Ser 106:291–301. doi:10.3354/meps106291.

    Article  Google Scholar 

  • Hentschel BT. 1998. Intraspecific variations in δ13C indicate ontogenetic diet changes in deposit-feeding polychaetes. Ecology 79:1357–70. doi:10.1890/0012-9658(1998)079[1357:IVICIO]2.0.CO;2.

    Article  Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM. 2015. Diet of worms emended: an update of polychaete feeding guilds. Annu Rev Mar Sci 7:497–520. doi:10.1146/annurev-marine-010814-020007.

    Article  Google Scholar 

  • Kato C, Iwata T, Nakano S, Kishi D. 2003. Dynamics of aquatic insect flux affects distribution of riparian web-building spiders. Oikos 103:113–20. doi:10.1034/j.1600-0706.2003.12477.x.

    Article  Google Scholar 

  • Lana PC, Guiss C, Disaró ST. 1991. Seasonal variation of biomass and production dynamics for above- and belowground components of a Spartina alterniflora marsh in the euhaline sector of Paranaguá Bay (SE Brazil). Estuar Coast Shelf Sci 32:231–41. doi:10.1016/0272-7714(91)90017-6.

    Article  Google Scholar 

  • Lana PC, Marone E, Lopes RM, Machado EC. 2001. The subtropical estuarine complex of Paranaguá Bay, Brazil. In: Seeliger U, Kjerfve B, editors. Coastal marine ecosystems of Latin America. Berlin, Heidelberg: Springer Berlin Heidelberg. pp 131–45.

  • Lana PC. 2003. As marismas da Baía de Paranaguá: características gerais, modos de apropriação e implicações para a legislação ambiental. Desenvolv Meio Ambient 8:11–23. doi:10.5380/dma.v8i0.22044.

    Google Scholar 

  • Layman CA, Araújo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–62. doi:10.1111/j.1469-185X.2011.00208.x.

    Article  PubMed  Google Scholar 

  • Leonard LA, Croft AL. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar Coast Shelf Sci 69:325–36. doi:10.1016/j.ecss.2006.05.004.

    Article  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM, Hall RO Jr. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–25. doi:10.1890/10-2240.1.

    Article  PubMed  Google Scholar 

  • Marczak LB, Thompson RM, Richardson JS. 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–8. doi:10.1890/0012-9658(2007)88[140:MTLHAP]2.0.CO;2.

    Article  PubMed  Google Scholar 

  • Martin F. 1992. Etude de l’écosystème mangrove de la Baie de Paranagua, Parana, Brésil: Analyse des impacts et propositions de gestion rationnelle. PhD Dissertation, Université de Paris, France.

  • Mfilinge PL, Meziane T, Bachok Z, Tsuchiya M. 2005. Litter dynamics and particulate organic matter outwelling from a subtropical mangrove in Okinawa Island, South Japan. Estuar Coast Shelf Sci 63:301–13. doi:10.1016/j.ecss.2004.11.022.

    Article  CAS  Google Scholar 

  • Nakano S, Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci (USA) 98:166–70. doi:10.1073/pnas.98.1.166.

    Article  CAS  Google Scholar 

  • Netto SA, Lana PC. 1997. Influence of Spartina alterniflora on superficial sediment characteritics of tidal flats in Paranaguá Bay (South-eastern Brazil). Estuar Coast Shelf Sci 44:641–8. doi:10.1006/ecss.1996.0154.

    Article  Google Scholar 

  • Netto SA, Lana PC. 1999. The role of above- and below-ground components of Spartina alterniflora (Loisel) and detritus biomass in structuring macrobenthic associations of Paranaguá Bay (SE, Brazil). Hydrobiologia 400:167–77. doi:10.1023/A:1003753001411.

    Article  Google Scholar 

  • Noernberg MA, Lautert LFC, Araújo AD, Marone E, Angelotti R, Netto JPB Jr, Krug LA. 2006. Remote sensing and GIS integration for modelling the Paranaguá Estuarine Complex-Brazil. J Coast Res SI 39:1627–31.

    Google Scholar 

  • Paetzold A, Lee M, Post DM. 2008. Marine resource flows to terrestrial arthropod predators on a temperate island: the role of subsidies between systems of similar productivity. Oecologia 157:653–9. doi:10.1007/s00442-008-1098-7.

    Article  PubMed  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL. 2010. Source partitioning using stable isotopes: coping with too much variation. PloS ONE 5:e9672. doi:10.1371/journal.pone.0009672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parnell AC, Jackson A. 2013. siar: Stable Isotope Analysis in R. R package version 4.2. https://cran.r-project.org/package=siar.

  • Phillips DL, Newsome SD, Gregg JW. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–7. doi:10.1007/s00442-004-1816-8.

    Article  PubMed  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. doi:10.1146/annurev.ecolsys.28.1.289.

    Article  Google Scholar 

  • Polis GA, Hurd SD. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci (USA) 92:4382–6. doi:10.1073/pnas.92.10.4382.

    Article  CAS  Google Scholar 

  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–18. doi:10.2307/3071875.

    Article  Google Scholar 

  • Pulgar J, Alvarez M, Morales J, Garcia-Huidobro M, Aldana M, Ojeda FP, Pulgar VM. 2011. Impact of oceanic upwelling on morphometric and molecular indices of an intertidal fish Scartichthys viridis (Blenniidae). Mar Freshw Behav Physiol 44:33–42. doi:10.1080/10236244.2010.533512.

    Article  Google Scholar 

  • R Development Core Team. 2015. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org.

  • Redjah I, Olivier F, Tremblay R, Myrand B, Pernet F, Neumeier U, Chevarie L. 2010. The importance of turbulent kinetic energy on transport of juvenile clams (Mya arenaria). Aquaculture 307:20–8. doi:10.1016/j.aquaculture.2010.06.022.

    Article  Google Scholar 

  • Ridderinkhof H. 1998. Sediment Transport in Intertidal Areas. In: Eisma D, Ed. Intertidal deposits: river mouths, tidal flats, and coastal lagoons. Boca Raton: CRC Press. p 363–82.

    Google Scholar 

  • Sabo JL, Power ME. 2002. River-watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 83:1860–9. doi:10.1890/0012-9658(2002)083[1860:RWEEOR]2.0.CO;2.

    Google Scholar 

  • Sandrini-Neto L, Camargo MG. 2012. GAD: an R package for ANOVA designs from general principles. R package version 1.1.1. http://cran.r-project.org/package=GAD.

  • Schubert A, Reise K. 1986. Predatory effects of Nephtys hombergii on other polychaetes in tidal flat sediments. Mar Ecol Prog Ser 34:117–24. doi:10.3354/meps034117.

    Article  Google Scholar 

  • Sessegolo GC. 1997. Estrutura e produção de serapilheira do manguezal do Rio Baguaçu, Baía de Paranaguá - PR. PhD Dissertation, Universidade Federal do Paraná, Brazil.

  • Slim FJ, Hemminga MA, Cocheret de la Morinière E, van der Velde G. 1996. Tidal exchange of macrolitter between a mangrove forest and adjacent seagrass beds (Gazi Bay, Kenya). Neth J Aquat Ecol 30:119–28. doi:10.1007/BF02272233.

    Article  CAS  Google Scholar 

  • Sordo L, Fournier J, Oliveira VM, Gern F, de Panizza AC, Lana PC. 2011. Temporal variations in morphology and biomass of vulnerable Halodule wrightii meadows at their southernmost distribution limit in the southwestern Atlantic. Bot Mar 54:13–21. doi:10.1515/BOT.2011.007.

    Article  Google Scholar 

  • Talley DM, Huxel GR, Holyoak M. 2006. Connectivity at the land-water interface. In: Crooks KR, Sanjayan M, Eds. Connectivity conservation. Cambridge: Cambridge University Press. p 97–129.

    Chapter  Google Scholar 

  • Underwood AJ. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vanderklift MA, Ponsard S. 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–82. doi:10.1007/s00442-003-1270-z.

    Article  PubMed  Google Scholar 

  • Vanhoni F, Mendonça F. 2008. O clima do litoral do estado do Paraná. Rev Bras Climatol 3–4:49–63.

    Google Scholar 

  • Verney R, Deloffre J, Brun-Cottan J-C, Lafite R. 2007. The effect of wave-induced turbulence on intertidal mudflats: Impact of boat traffic and wind. Cont Shelf Res 27:594–612. doi:10.1016/j.csr.2006.10.005.

    Article  Google Scholar 

  • Wafar S, Untawale AG, Wafar M. 1997. Litter fall and energy flux in a mangrove ecosystem. Estuar Coast Shelf Sci 44:111–24. doi:10.1006/ecss.1996.0152.

    Article  Google Scholar 

  • Weis JS, Windham L, Santiago-Bass C, Weis P. 2002. Growth, survival, and metal content of marsh invertebrates fed diets of detritus from Spartina alterniflora Loisel. and Phragmites australis Cav. Trin. ex Steud. from metal-contaminated and clean sites. Wetl Ecol Manag 10:71–84. doi:10.1023/A:1014311521708.

    Article  CAS  Google Scholar 

  • Wernberg T, Vanderklift MA, How J, Lavery PS. 2006. Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147:692–701. doi:10.1007/s00442-005-0318-7.

    Article  PubMed  Google Scholar 

  • Whitfield AK. 1988. The role of tides in redistributing macrodetrital aggregates within the Swartvlei Estuary. Estuaries 11:152–9. doi:10.2307/1351967.

    Article  Google Scholar 

  • Witman JD, Ellis JC, Anderson WB. 2004. The influence of physical process, organisms, and permeability on cross-ecosystem fluxes. In: Polis GA, Power ME, Huxel GR, Eds. Food webs at the landscape level. Chicago: University of Chicago Press. p 335–58.

    Google Scholar 

  • Zhang H, Yuan W, Dong W, Liu S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–7. doi:10.1016/j.ecocom.2014.01.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Maurício Noernberg (Lab. Física Marinha—CEM/UFPR) for the help with the S4 current meter, Plinio Camargo (Lab. Ecologia Isotópica—CENA/USP) for stable isotope analysis and Helen A. Pichler for provide the isotopic data of microphytobenthos. We are grateful to Márcia N. Kurtz and a number of graduate and undergraduate students from Centro de Estudos do Mar/UFPR for their help in the field and laboratory. Clube Náutico de Antonina provided facilities for field work. National Institute of Meteorology provided wind data. We also thank Alexandre Garcia, Rosana Rocha, Laurie Marczak, Leonardo Sandrini-Neto, and the anonymous referees for their critical review and constructive comments on earlier drafts of the manuscript. AMD was supported by CAPES (Brazilian Ministry of Education) and PL by CNPq (Brazilian National Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Menegotto Domingos.

Additional information

Author contributions

AMD and PCL conceived and designed the study. AMD performed the research and analyzed the data. AMD and PCL wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Supplementary material 2 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, A.M., Lana, P. Detecting Multiple States of Trophic Connectivity Between Mangroves and Salt Marshes. Ecosystems 20, 1179–1189 (2017). https://doi.org/10.1007/s10021-016-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0101-0

Keywords

Navigation