, Volume 20, Issue 6, pp 1089–1103 | Cite as

Climate, Topography, and Canopy Chemistry Exert Hierarchical Control Over Soil N Cycling in a Neotropical Lowland Forest

  • Brooke B. OsborneEmail author
  • Megan K. Nasto
  • Gregory P. Asner
  • Christopher S. Balzotti
  • Cory C. Cleveland
  • Benjamin W. Sullivan
  • Philip G. Taylor
  • Alan R. Townsend
  • Stephen Porder


Nutrient availability varies substantially across lowland tropical forests and constrains their responses to global change. However, interactions among regional, landscape, and local controls of nutrient availability are poorly understood. In that context, we explored the effects of rainfall, topography, and canopy chemistry on nitrogen (N) cycling across the Osa Peninsula (Costa Rica). We sampled soils from catenas in regions receiving 3000 versus 5000 mm y−1 rainfall. In both regions, we sampled catenas starting on narrow, knife-edged ridges, and in the less humid region we compared catenas starting on rapidly eroding knife-edged ridges to catenas with ridges consisting of slowly eroding terraces. On the stable terraces, we sampled soils from 0.25 ha plots with either high or low mean canopy N. In all sites, we measured metrics of long- (soil δ15N) and short-term (net nitrification, net N mineralization, and KCl-extractable N) N availability. Mean soil δ15N was elevated in the less humid region (3.8 ± 0.16 vs. 3.1 ± 0.14‰; P = 0.003). Within that region, mean δ15N was enriched by approximately 1‰ on stable terraces (5.3 ± 0.14‰) relative to nearby knife-edged ridges (4.0 ± 0.24‰; P < 0.001). Short-term N metrics did not vary with rainfall or topography (P > 0.05). By contrast, short-term soil N metrics differed under canopies with high versus low canopy N, but soil δ15N did not. These results illustrate the role of climate and topography as dominant drivers of long-term N cycling in the region, as well as the potential for canopy characteristics, which are likely determined by species composition in this system, to impose small-scale heterogeneity within those broader constraints. Overall, our work suggests the utility of a hierarchical framework for understanding how diverse drivers of nutrient status interact across space and time in tropical forests.


15canopy chemistry Carnegie Airborne Observatory climate imaging spectroscopy LiDAR nitrogen soil topography 



This work was supported through a collaborative Grant awarded by the National Science Foundation (DEB-0918387 to SP), and an IGERT (DGE-0966060 to D. Rand). Carnegie Airborne Observatory (CAO) data collection and processing was funded privately by the Carnegie Institution for Science. The CAO has been made possible by grants and donations to G.P. Asner from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew W. Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr, and William R. Hearst III. From the Carnegie Airborne Observatory, we thank R. Martin, C. Anderson, D. Knapp and N. Vaughn for assistance with data collection and processing. We thank Osa Conservation and the Ministeria de Ambiente y Energía for assistance with research permits and site access. The authors appreciate field and laboratory assistance from M. Lopez as well as B. Cannon, A. Ginter, B. Munyer, A. Swanson and R. Ho. Funding was provided by Blue Moon Foundation.

Supplementary material

10021_2016_95_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)
10021_2016_95_MOESM2_ESM.jpg (227 kb)
Supplementary material 2 (JPEG 226 kb)
10021_2016_95_MOESM3_ESM.jpg (83 kb)
Supplementary material 3 (JPEG 83 kb)


  1. Adamek M, Corre MD, Hölscher D. 2009. Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. Journal of Tropical Ecology 25:637–47.CrossRefGoogle Scholar
  2. Alvarez-Clare S, Mack MC, Brooks M. 2013. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94:1540–51.CrossRefPubMedGoogle Scholar
  3. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17:1031.CrossRefGoogle Scholar
  4. Asner GP, Knapp DE, Boardman J, Green RO, Kennedy-Bowdoin T, Eastwood M, Martin RE, Anderson C, Field CB. 2012. Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing of Environment 124:454–65.CrossRefGoogle Scholar
  5. Asner GP, Martin RE, Anderson CB, Knapp DE. 2015. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sensing of Environment 158:15–27.CrossRefGoogle Scholar
  6. Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, Martinez P. 2014. Amazonian functional diversity from forest canopy chemical assembly. Proceedings of the National Academy of Sciences of the United States of America 111:5604–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Asner GP, Martin RE. 2016. Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology 22:2216–27.CrossRefPubMedGoogle Scholar
  8. Balzotti CC, Asner GP, Taylor PG, Cleveland CC, Cole R, Marin R, Nasto MK, Osborne BB, Porder S, Townsend AR. 2016. Environmental controls on canopy foliar N distribution in a Neotropical lowland forest. Ecol Appl 26:2449–62.Google Scholar
  9. Bern CR, Townsend AR, Farmer GL. 2005. Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86:626–32.CrossRefGoogle Scholar
  10. Binkley D, Giardina C. 1998. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42:89–106.CrossRefGoogle Scholar
  11. Bonan GB, Levis S. 2010. Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophysical Research Letters 37:1–6.CrossRefGoogle Scholar
  12. Buchs DM, Baumgartner PO, Baumgartner-Mora C, Bandini AN, Jackett SJ, Diserens MO, Stucki J. 2009. Late Cretaceous to Miocene seamount accretion and melange formation in the Osa and Burica Peninsulas (Southern Costa Rica): episodic growth of a convergent margin. Geological Society Special Publication 328:411–56.CrossRefGoogle Scholar
  13. Burghouts TBA, Van Straalen NM, Bruijnzeel LA. 1998. Spatial heterogeneity of element and litter turnover in a Bornean rain forest. Journal of Tropical Ecology 44:477–506.CrossRefGoogle Scholar
  14. Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, Del Grosso SJ, Running SW. 2013. Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences 110:12733–7.CrossRefGoogle Scholar
  15. Cleveland CC, Reed SC, Townsend AR. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503.CrossRefPubMedGoogle Scholar
  16. Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology letters 14:939–47.CrossRefPubMedGoogle Scholar
  17. Cleveland CC, Townsend AR. 2006. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences 103:10316–21.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America 110:5064–8.Google Scholar
  19. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, MacK MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183:980–92.CrossRefPubMedGoogle Scholar
  20. Dent DH, Bagchi R, Robinson D, Majalap-Lee N, Burslem DFRP. 2006. Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant and Soil 288:197–215.CrossRefGoogle Scholar
  21. Feilhauer H, Asner GP, Martin RE, Schmidtlein S. 2010. Brightness-normalized partial least squares regression for hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer 111:1947–57.CrossRefGoogle Scholar
  22. Haaland DM, Thomas EV. 1988. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry 60:1193–202.CrossRefGoogle Scholar
  23. Hall SJ, Matson PA. 2003. Nutrient status of tropical rain forest influences soil N dynamics after N additions. Ecological Monographs 73:107–29.CrossRefGoogle Scholar
  24. Handley LL, Austin AT, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S, Stewart GR. 1999. The 15 N-natural abundance of ecosystem samples reflects measures of water availability. Australian Journal of Plant Physiology 26:185–99.CrossRefGoogle Scholar
  25. Hauff F, Hoernle K, van den Bogaard P, Alvarado G, Garbe-Schönberg D. 2000. Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochemistry Geophysics Geosystems 1:1009.CrossRefGoogle Scholar
  26. Hidaka A, Kitayama K. 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology 99:849–57.CrossRefGoogle Scholar
  27. Hilton RG, Galy A, West AJ, Hovius N, Roberts GG. 2013. Geomorphic control on the δ15N of mountain forests. Biogeosciences 10:1693–705.CrossRefGoogle Scholar
  28. Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–97.CrossRefPubMedGoogle Scholar
  29. Houlton BZ, Sigman DM, Hedin LO. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proceedings of the National Academy of Sciences of the United States of America 103:8745–50.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Houlton BZ, Sigman DM, Schuur EAG, Hedin LO. 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proceedings of the National Academy of Sciences of the United States of America 104:8902–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ilstedt U, Singh S. 2005. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biology and Biochemistry 37:1407–10.CrossRefGoogle Scholar
  32. Jenny H, Arkley RJ, Schultz AM. 1969. The pygmy forest-podsol ecosystem and its dune associates of the Mendocino coast. Madrono 20:60–74.Google Scholar
  33. Jenny H. 1941. Factors of soil formation: a system of quantitative pedology. New York, NY: McGraw-Hill.Google Scholar
  34. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB. 2007. Soil nutrients influence spatial distributions of tropical tree species. PNAS 104:864–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kappelle M, Castro M, Acevedo H, Gonzáles L, Monge H. 2003. Ecosistemas del área de conservación Osa (ACOSA). San Jose, Costa Rica: Instituto Nacional de Biodiversidad.Google Scholar
  36. Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11:35–43.PubMedGoogle Scholar
  37. Keller AB, Reed SC, Townsend AR, Cleveland CC. 2013. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest. Soil Biology and Biochemistry 58:61–9.CrossRefGoogle Scholar
  38. Laughlin DC, Richardson SJ, Wright EF, Bellingham PJ. 2015. Environmental filtering and positive plant litter feedback simultaneously explain correlations between leaf traits and soil fertility. Ecosystems 18:1269–80.CrossRefGoogle Scholar
  39. Lovett G, Weathers K, Arthur M, Schultz J. 2004. Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308.CrossRefGoogle Scholar
  40. Malhi Y, Wright J. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical transactions of the Royal Society of London Series B, Biological sciences 359:311–29.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65.Google Scholar
  42. Mayor JR, Wright SJ, Schuur EAG, Brooks ME, Turner BL. 2014a. Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry 119:293–306.CrossRefGoogle Scholar
  43. Mayor JR, Wright SJ, Turner BL. 2014b. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology 102:36–44.CrossRefGoogle Scholar
  44. McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–401.CrossRefGoogle Scholar
  45. Mirmanto E, Proctor J, Green J, Nagy L, Suriantata . 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical transactions of the Royal Society of London Series B, Biological sciences 354:1825–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nardoto GB, Ometto JPHB, Ehleringer JR, Higuchi N, Bustamante MMDC, Martinelli LA. 2008. Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystems 11:1234–46.CrossRefGoogle Scholar
  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H. 2016. vegan: Community Ecology Package. R package version 2.3–5.
  48. Perez S, Alvarado A, Ramirez E. 1978. Manual descriptivo del mapa de asociaciones de subgrupos de suelos de Costa Rica: (escala 1:200000). San Jose, Costa Rica: Oficina de Plantification Sectorial Agropecuario.Google Scholar
  49. Porder S, Asner GP, Vitousek PM. 2005. Ground-based and remotely sensed nutrient availability across a tropical landscape. Proceedings of the National Academy of Sciences of the United States of America 102:10909–12.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Porder S, Hilley GE. 2011. Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes. Biogeochemistry 102:153–66.CrossRefGoogle Scholar
  51. Porder S, Johnson AH, Xing HX, Brocard G, Goldsmith S, Pett-Ridge J. 2015. Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma 249–250:100–10.CrossRefGoogle Scholar
  52. Powers JS, Kalicin MH, Newman ME. 2004. Tree species do not influence local soil chemistry in a species-rich Costa Rica rain forest. Journal of Tropical Ecology 20:587–90.CrossRefGoogle Scholar
  53. Reed SC, Cleveland CC, Townsend AR. 2008. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–34.CrossRefPubMedGoogle Scholar
  54. Schuur EA, Matson PA. 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–42.CrossRefPubMedGoogle Scholar
  55. Schuur EAG, Chadwick OA, Matson PA. 2001. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:3182–96.CrossRefGoogle Scholar
  56. Schuur EAG. 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165–70.CrossRefGoogle Scholar
  57. Sprent JI. 2009. Legume Nodulation: A Global Perspective. Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  58. Taylor P, Asner G, Dahlin K, Anderson C, Knapp D, Martin R, Mascaro J, Chazdon R, Cole R, Wanek W, Hofhansl F, Malavassi E, Vilchez-Alvarado B, Townsend A. 2015. Landscape-scale controls on aboveground forest carbon stocks on the Osa Peninsula, Costa Rica. Plos One 10:e0126748.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM. 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21:1–15.CrossRefGoogle Scholar
  60. Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends in Ecology and Evolution 23:424–31.CrossRefPubMedGoogle Scholar
  61. Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC. 2011. Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment 9:9–17.CrossRefGoogle Scholar
  62. Van Haren JLM, De Oliveira RC, Restrepo-Coupe N, Hutyra L, De Camargo PB, Keller M, Saleska SR. 2010. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest? Journal of Geophysical Research: Biogeosciences 115:1–9.Google Scholar
  63. Vasquez M. 1989. Mapa de suelos de Costa Rica. Scale 1:200.000. San Jose, Costa Rica.Google Scholar
  64. Vitousek P, Chadwick O, Matson P, Allison S, Derry L, Kettley L, Luers A, Mecking E, Monastra V, Porder S. 2003. Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems 6:762–72.CrossRefGoogle Scholar
  65. Vitousek PM. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–98.CrossRefGoogle Scholar
  66. Vitousek PM. 2004. Nutrient cycling and limitation: Hawai’i as a model system. Princeton, New Jersey: Princeton University Press.Google Scholar
  67. Wang YP, Law RM, Pak B. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–82.CrossRefGoogle Scholar
  68. Waring ABG, Álvarez-Cansino L, Barry K, Becklund KK, Gei MG, Lopez O, Markesteijn L, Mangan S, RodrÍguez ME, Segnitz RM, Schnitzer SA, Powers JS. 2015. Pervasive and strong effects of plant individuals and species on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects. Proceedings of the Royal Society B 282:1–8.CrossRefGoogle Scholar
  69. Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR. 2015. Topographic controls on nitrogen availability in a lowland tropical forest. Ecology 96:1561–74.CrossRefGoogle Scholar
  70. White AF, Schulz MS, Stonestrom DA, Vivit DV, Fitzpatrick J, Bullen TD, Maher K, Blum AE. 2009. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochimica et Cosmochimica Acta 73:2769–803.CrossRefGoogle Scholar
  71. Wieder W, Cleveland CC, Townsend AR. 2009. Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–41.CrossRefPubMedGoogle Scholar
  72. Wieder WR, Cleveland CC, Smith WK, Todd-Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience 8:441–4.CrossRefGoogle Scholar
  73. Wieder WR, Cleveland CC, Townsend AR. 2008. Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry 88:127–38.CrossRefGoogle Scholar
  74. Wieder WR, Cleveland CC, Townsend AR. 2011. Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Global Change Biology 17:3195–207.CrossRefGoogle Scholar
  75. Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner VJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD, Yavitt B, Turner L, Tanner VJ, Garcia N, Harms E, Sayer J, Santiago S. 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–25.CrossRefPubMedGoogle Scholar
  76. Xia S-W, Chen J, Schaefer D, Detto M. 2015. Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant and Soil 391:51–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Brooke B. Osborne
    • 1
    Email author
  • Megan K. Nasto
    • 2
  • Gregory P. Asner
    • 3
  • Christopher S. Balzotti
    • 3
  • Cory C. Cleveland
    • 2
  • Benjamin W. Sullivan
    • 4
  • Philip G. Taylor
    • 5
  • Alan R. Townsend
    • 5
  • Stephen Porder
    • 1
  1. 1.Department of Ecology and Evolutionary Biology, Institute at Brown for Environment and SocietyBrown UniversityProvidenceUSA
  2. 2.Department of Ecosystem and Conservation ScienceUniversity of MontanaMissoulaUSA
  3. 3.Department of Global EcologyCarnegie Institution for ScienceStanfordUSA
  4. 4.Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoUSA
  5. 5.Nicholas School of the EnvironmentDuke UniversityDurhamUSA

Personalised recommendations