, Volume 20, Issue 5, pp 1042–1057 | Cite as

Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling

  • Rodney A. ChimnerEmail author
  • Thomas G. Pypker
  • John A. Hribljan
  • Paul A. Moore
  • James M. Waddington


Globally, peatlands store a large quantity of soil carbon that can be subsequently modified by hydrologic alterations from land-use change and climate change. However, there are many uncertainties in predicting how carbon cycling and greenhouse gas emissions are altered by long-term changes in hydrology. Therefore, the goal of this study was to quantify how multi-decadal manipulations of water table (WT) levels affected carbon cycling (plant production and net ecosystem exchange from three eddy covariance towers) in a peatland complex modified by levee construction, which created a wetter area up-gradient of the levee (mean WT was 12.1 cm below the surface), a dry area below the levee (36.8 cm), and an adjacent reference site not affected by the levee (21.6 cm). We found that mean total plant production was greatest in the reference site (311.9 g C m−2 y−1), followed by the dry site (290.5 g C m−2 y−1), and lowest in the wet site (227.1 g C m−2 y−1). Net ecosystem exchange during the growing season was negative for all sites (sink), with the wet site having the greatest sink and the dry site having the lowest sink. Ecosystem respiration increased and CH4 emissions decreased with a decreasing WT level. This research demonstrates that human alteration of peatland WT levels can have long-term (>50 years) consequences on peatland carbon cycling.


fens climate change carbon methane land use disturbance water table 



The authors gratefully acknowledge Robin Conklin, Elizabeth Boisvert, Laura Kangas, Jamie Bourgo, Chris Johnson, Drew Ballantyne, and Laura Matkala for their help with site construction, as well as field and lab work. We greatly appreciate two anonymous reviewers for improving the quality of this paper. Todd Ontl also provided thoughtful comments and review of this manuscript. This research was supported by the U.S. Department of Energy’s Office of Science (BER) through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University. Additional support was provided by the Ecosystem Science Center at Michigan Technological University. The project would not have been possible without the cooperation of the Seney National Wildlife Refuge providing site access.


  1. Aerts R, Ludwig F. 1997. Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–8.CrossRefGoogle Scholar
  2. Alm J, Schulman L, Silvola J, Walden J, Nykanen H, Martikainen PJ. 1999. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–74.CrossRefGoogle Scholar
  3. Andresen J, Hilberg S, Kunkel K. 2012. Historical Climate and Climate Trends in the Midwestern USA. In U.S. National Climate Assessment Midwest Technical Input Report. Winkler J, Andresen J, Hatfield J, Bidwell D, and Brown D, editors, pp. 1–18.Google Scholar
  4. Baldocchi D, Valentini R, Running S, Oechel W, Dahlman R. 1996. Strategies for measuring and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob Change Biol 2:159–68.CrossRefGoogle Scholar
  5. Ballantyne DM, Hribljan JA, Pypker TG, Chimner RA. 2014. Long-term water table manipulations alter peatland gaseous carbon fluxes in Northern Michigan. Wetl Ecol Manag 22:35–47.CrossRefGoogle Scholar
  6. Biancalani R, Avagyan A, Eds. 2014. Towards climate-responsible peatlands management. Mitigation of Climate Change in Agriculture Series (MICCA) 9.Google Scholar
  7. Blodau C, Basiliko N, Moore TR. 2004. Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–51.CrossRefGoogle Scholar
  8. Bond-Lamberty B, Wang C, Gower ST. 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J For Res 32:1441–50.CrossRefGoogle Scholar
  9. Bradof KL. 1992. Ditching of Red Lake Peatland during the homestead era. In: Wright HE, Coffin BA, Aaseng NE, Eds. The patterned peatlands of Minnesota. Minneapolis: University of Minnesota Press. p 263–84.Google Scholar
  10. Bragazza L. 2006. A decade of plant species changes on a mire in the Italian Alps: vegetation-controlled or climate-driven mechanisms? Clim Change 77:415–29.CrossRefGoogle Scholar
  11. Bubier JL, Bhatia G, Moore TR, Roulet NT, Lafleur PM. 2003. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–67.Google Scholar
  12. Cai T, Flanagan LB, Syed KH. 2010. Warmer and drier conditions stimulate respiration more than photosynthesis in a boreal peatland ecosystem: analysis of automatic chambers and eddy covariance measurements. Plant Cell Environ 33:394–407.PubMedCrossRefGoogle Scholar
  13. Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Romanowicz EH, Lazrus A. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim Cosmochim Acta 59:3663–8.CrossRefGoogle Scholar
  14. Chimner RA, Cooper DJ, Parton WJ. 2002. Modeling carbon accumulation in Rocky Mountain fens. Wetlands 22:100–10.CrossRefGoogle Scholar
  15. Chimner RA, Cooper DJ. 2003a. Influence of water table levels on CO2 emissions in a Colorado subalpine fen: An in situ microcosm study. Soil Biol Biochem 35:345–51.CrossRefGoogle Scholar
  16. Chimner RA, Cooper DJ. 2003b. Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Can J Bot 81:477–91.CrossRefGoogle Scholar
  17. Chimner RA, Hart JB. 1996. Hydrology and microtopography effects on northern white-cedar regeneration in Michigan’s Upper Peninsula. Can J For Res 26:389–93.CrossRefGoogle Scholar
  18. Chimner RA, Cooper DJ, Wurster FC, Rochefort L. 2016. An overview of peatland restoration in North America, where are we after 25 years. Restor Ecol. doi: 10.1111/rec.12434
  19. Chivers MR, Turetsky MR, Waddington JM, Harden JW, McGuire AD. 2009. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems 12:1329–42.CrossRefGoogle Scholar
  20. Churchill AC, Turetsky MR, McGuire AD, Hollingsworth TN. 2015. Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen. Can J For Res 45:185–93.CrossRefGoogle Scholar
  21. Clymo R. 1970. The growth of Sphagnum: methods of measurement. J Ecol 58:13–49.CrossRefGoogle Scholar
  22. Couwenberg J, Dommain R, Joosten H. 2009. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Change Biol 16:1715–32.CrossRefGoogle Scholar
  23. Dinsmore KJ, Skiba UM, Billett MF, Rees RM. 2009. Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 318:229–42.CrossRefGoogle Scholar
  24. Dise NB, Gorham E, Verry ES. 1993. Environmental factors controlling methane emissions from peatlands in Northern Minnesota. J Geophys Res Atmos 98:10583–94.CrossRefGoogle Scholar
  25. Dorrepaal E, Aerts R, Cornelissen JH, Callaghan TV, Van Logtestijn RS. 2004. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob Change Biol 10:93–104.CrossRefGoogle Scholar
  26. Fahey TJ, Tierney GL, Fitzhugh RD, Wilson GF, Siccama TG. 2005. Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. Can J For Res 35:244–53.CrossRefGoogle Scholar
  27. Finlay J, Neff J, Zimov S, Davydova A, Davydov S. 2006. Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC. Geophys Res Lett 33:L10401.CrossRefGoogle Scholar
  28. Foken T, Wichura B. 1996. Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105.CrossRefGoogle Scholar
  29. Foken T, Gockede M, Mauder M, Mahrt L, Amiro BD, Munger JW. 2004. Post-field data quality control. In: Lee X, Massman WJ, Law B, Eds. Handbook of Micrometeorology: A guide for surface flux measurement and analysis. Dordrecht: Kluwer. p 181–208.Google Scholar
  30. Fraser C, Roulet N, Moore T. 2001. Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol Process 15:3151–66.CrossRefGoogle Scholar
  31. Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila E-S, Roulet NT. 2011. Peatlands in the Earth’s 21st century climate system. Environ Rev 19:371–96.CrossRefGoogle Scholar
  32. Frolking S, Talbot J, Subin ZM. 2014. Exploring the relationship between peatland net carbon balance and apparent carbon accumulation rate at century to millennial time scales. Holocene 24:1167–73.CrossRefGoogle Scholar
  33. Gorham E. 1991. Northern Peatlands—role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.PubMedCrossRefGoogle Scholar
  34. Granath G, Strengbom J, Rydin H. 2010. Rapid ecosystem shifts in peatlands: linking plant physiology and succession. Ecology 91:3047–56.PubMedCrossRefGoogle Scholar
  35. Griffis TJ, Rouse WR, Waddington JM. 2000. Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochem Cycles 14:1109–21.CrossRefGoogle Scholar
  36. Haddaway NR, Burden A, Evans CD, Healey JR, Jones DL, Dalrymple SE, Pullinn AS. 2014. Evaluating effects of land management on greenhouse gas fluxes and carbon balances in boreo-temperate lowland peatland systems. Environ Evid 3:1.CrossRefGoogle Scholar
  37. Harden JW, Munster J, Manies KL, Mack MC, Bubier JL. 2009. Changes in species, areal cover, and production of moss across a fire chronosequence in Interior Alaska. US Geological Survey Open-File Report 2009-1208, p 22.Google Scholar
  38. Hargreaves KJ, Milne R, Cannell MGR. 2003. Carbon balance of afforested peatland in Scotland. Forestry 76:299–317.CrossRefGoogle Scholar
  39. Harms WR, Schreuder HT, Hook DD, Brown CL. 1980. The effects of flooding on the swamp forest in Lake Ocklawaha, Florida. Ecology 61:1412–21.CrossRefGoogle Scholar
  40. Hirano T, Segah H, Harada T, Limin S, June T, Hirata R, Osaki M. 2007. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Change Biol 13:412–25.CrossRefGoogle Scholar
  41. Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–71.CrossRefGoogle Scholar
  42. Hribljan JA. 2012. The effect of long-term water table manipulations on vegetation, pore water, substrate quality, and carbon cycling in a northern poor fen peatland. Ph.D. Dissertation, Michigan Technological University.Google Scholar
  43. Hribljan JA, Kane ES, Pypker TG, Chimner RA. 2014. The effect of long-term water table manipulations on dissolved organic carbon dynamics in a poor fen peatland. Journal of Geophysical Research: Biogeosciences 10(1002/20):1–19.Google Scholar
  44. IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edenhofer, O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC, editors. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  45. Jaatinen K, Laiho R, Vuorenmaa A, Del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H. 2008. Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environ Microbiol 10:339–53.PubMedCrossRefGoogle Scholar
  46. Kangas L, Maanavilja L, Hájek T, Juurola E, Chimner RA, Mehtätalo L, Tuittila ES. 2014. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests. Ecol Evol 4:381–96.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kane ES, Turetsky MR, Harden JW, McGuire AD, Waddington JM. 2010. Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen. J Geophys Res 115:G04012.Google Scholar
  48. Kljun N, Calanca P, Rotach MW, Schmid HP. 2004. A simple parameterization for flux footprint predictions. Bound-Layer Meteorol 112:503–23.CrossRefGoogle Scholar
  49. Knapp AK, Briggs JM, Childers DL, Sala OE. 2007. Estimating aboveground net primary production in grassland– and herbaceous–dominated ecosystems. In: Fahey TJ, Knapp AK, Eds. Principles and standards for measuring primary production. New York: Oxford University Press. p 27–48.CrossRefGoogle Scholar
  50. Kozlowski TT. 1997. Responses of woody plants to flooding and salinity. Tree Physiol 17:490.CrossRefGoogle Scholar
  51. Kowalski KP, Wilcox DA. 2003. Differences in sedge fen vegetation upstream and downstream from a managed impoundment. Am Midl Nat 150:199–220.CrossRefGoogle Scholar
  52. Lafleur PM, Moore TR, Roulet NT, Frolking S. 2005. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–29.CrossRefGoogle Scholar
  53. Laiho R. 2006. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–24.CrossRefGoogle Scholar
  54. Laine J, Vasander H, Laiho R. 1995. Long-term effects of water level drawdown on the vegetation of dry pine mires in southern Finland. J Appl Ecol 32:785–802.CrossRefGoogle Scholar
  55. Leifeld J, Müller M, Fuhrer J. 2011. Peatland subsidence and carbon loss from dry temperate fens. Soil Use Manag 27:170–6.CrossRefGoogle Scholar
  56. Lohila A, Laurila T, Aro L, Aurela M, TuovinenJ-P Laine J, Kolari P, Minkkinen K. 2007. Carbon dioxide exchange above a 30-year-old Scots pine plantation established on organic soil cropland. Boreal Environ Res 12:141–57.Google Scholar
  57. Lohila A, Minkkinen K, Aurela M, Tuovinen J-P, Penttilä T, Ojanen P, Laurila T. 2011. Greenhouse gas flux measurements in a forestry-dry peatland indicate a large carbon sink. Biogeosciences 8:3203–18.CrossRefGoogle Scholar
  58. Macdonald SE, Yin F. 1999. Factors influencing size inequality in peatland black spruce and tamarack: evidence from post-drainage release growth. J Ecol 87:404–12.CrossRefGoogle Scholar
  59. Makiranta P, Laiho R, Fritze H, Hytonen J, Laine J, Minkkinen K. 2009. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem 41:695–703.CrossRefGoogle Scholar
  60. Maanavilja L, Kangas L, Mehtätalo L, Tuittila E-S. 2015. Rewetting of drained boreal spruce swamp forests results in rapid recovery of production. J Appl Ecol 52:1355–63.CrossRefGoogle Scholar
  61. Massman WJ. 2000. A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–98.CrossRefGoogle Scholar
  62. McNicol G, Silver WL. 2015. Non-linear response of carbon dioxide and methane emissions to oxygen availability in a dry histosol. Biogeochemistry 123:299–306.CrossRefGoogle Scholar
  63. Meyer A, Tarvainen L, Nousratpour A, Björk RG, Ernfors M, Grelle A, Kasimir Klemedtsson Å, Lindroth A, Räntfors M, Rütting T, Wallin G, Weslien P, Klemedtsson L. 2013. A fertile peatland forest does not constitute a major greenhouse gas sink. Biogeosciences 10:7739–58.CrossRefGoogle Scholar
  64. Moore PA, Morris PJ, Waddington JM. 2015. Multi-decadal water table manipulation alters peatland hydraulic structure and moisture retention. Hydrol Process 29:2970–82.CrossRefGoogle Scholar
  65. Murphy M, Laiho R, Moore TR. 2009. Effects of water table drawdown on root production and aboveground biomass in a boreal bog. Ecosystems 12:1268–82.CrossRefGoogle Scholar
  66. Murphy MT, Moore TR. 2010. Linking root production to aboveground plant characteristics and water table in a temperate bog. Plant Soil 336:219–31.CrossRefGoogle Scholar
  67. Minkkinen K, Laine J. 1998. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–75.CrossRefGoogle Scholar
  68. Minkkinen K, Vasander H, Jauhianen S, Karsisto M, Laine J. 1999. Post-drainage changes in vegetation and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 207:107–20.CrossRefGoogle Scholar
  69. Minkkinen K, Korhonen R, Savolainen I, Laine J. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900–2100—the impact of forestry drainage. Glob Change Biol 88:785–99.CrossRefGoogle Scholar
  70. Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Chukina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, Stauch VJ. 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–32.CrossRefGoogle Scholar
  71. Moore TR, Roulet NT, Waddington JM. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Change 40:229–45.CrossRefGoogle Scholar
  72. Moore TR, Knowles R. 1989. Influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–8.CrossRefGoogle Scholar
  73. Moore PA, Pypker TG, Waddington JM. 2013. Effect of long-term water table manipulation on peatland evapotranspiration. Agric For Meteorol 178–179:106–19.CrossRefGoogle Scholar
  74. Munir T, Xu B, Perkins M, Strack M. 2014. Responses of carbon dioxide flux and plant biomass to water table drawdown in a treed peatland in northern Alberta: a climate change perspective. Biogeosciences 11:807–20.CrossRefGoogle Scholar
  75. Munir TM, Perkins M, Kaing E, Strack M. 2015. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. Biogeosciences 12:1091–111.CrossRefGoogle Scholar
  76. Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Glob Biogeochem Cycles 12:53–69.CrossRefGoogle Scholar
  77. Ojanen P, Minkkinen K, Penttilä T. 2013. The current greenhouse gas impact of forestry-dry boreal peatlands. For Ecol Manag 289:201–8.CrossRefGoogle Scholar
  78. Page S, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, Limin S. 2008. Restoration ecology of lowland tropical peatlands in southeast asia: current knowledge and future research directions. Ecosystems 12:888–905.CrossRefGoogle Scholar
  79. Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B. 2003. Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–6.CrossRefGoogle Scholar
  80. Patterson L, Cooper DJ. 2007. The use of hydrologic and Ecological indicators for the restoration of drainage ditches and water diversions in a Mountain Fen, Cascade Range, California. Wetlands 27:290–304.CrossRefGoogle Scholar
  81. Paavilainen E, Päivänen J. 1995. Peatland forestry—ecology and principles. Berlin: Springer. p 248p.CrossRefGoogle Scholar
  82. Pellerin S, Lavoie C. 2003. Reconstructing the recent dynamics of mires using a multitechnique approach. J Ecol 91:1008–21.CrossRefGoogle Scholar
  83. Pearson M, Penttilä T, Harjunpää L, Laiho R, Laine J, Sarjala T, Silvan K, Silvan N. 2015. Effects of temperature rise and water-table-level drawdown on greenhouse gas fluxes of boreal sedge fens. Boreal Environ Res 20:489–505.Google Scholar
  84. Preston MD, Eimers MC, Watmough SA. 2011. Effect of moisture and temperature variation on DOC release from a peatland: Conflicting results from laboratory, field and historical data analysis. Sci Total Environ 409:1235–42.PubMedCrossRefGoogle Scholar
  85. Potvin LR, Kane ES, Chimner RA, Kolka RK, Lilleskov EA. 2014. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm). Plant Soil 387:277–94.CrossRefGoogle Scholar
  86. Pypker TG, Moore PA, Waddington JM, Hribljan JA, Chimner RA. 2013. Shifting environmental controls on CH4 fluxes in a sub-boreal peatland. Biogeosciences 10:7971–81.CrossRefGoogle Scholar
  87. Riutta T, Laine J, Tuittila E-S. 2007. Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–33.CrossRefGoogle Scholar
  88. Robroek BJM, Schouten MGC, Limpens J, Berendse F, Poorter H. 2009. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob Change Biol 15:680–91.CrossRefGoogle Scholar
  89. Roulet NT. 2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20:605–15.CrossRefGoogle Scholar
  90. Roulet NT, Crill PM, Comer NT, Dove A, Boubonniere RA. 1997. CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J Geophys Res 102:29313–19.CrossRefGoogle Scholar
  91. Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol 13:397–411.CrossRefGoogle Scholar
  92. Schimelpfenig DW, Cooper DJ, Chimner RA. 2014. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor Ecol 22:257–65.CrossRefGoogle Scholar
  93. Schreader CP, Rouse WR, Griffis TJ, Boudreau LD, Blanken PD. 1998. Carbon dioxide fluxes in a northern fen during a hot, dry summer. Global Biogeochem Cycles 12:729–40.CrossRefGoogle Scholar
  94. Segers R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51.CrossRefGoogle Scholar
  95. Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ. 1996. The contribution of plant roots to CO2 fluxes from organic soils. Biol Fertil Soils 23:126–31.CrossRefGoogle Scholar
  96. St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–75.CrossRefGoogle Scholar
  97. Strack M, Waddington JM. 2007. Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Glob Biogeochem Cycles 21:GB1007. doi: 10.1029/2006GB002715
  98. Strack M, Waddington JM, Rochefort L, Tuittila E-S. 2006a. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res 111:G02006.CrossRefGoogle Scholar
  99. Strack M, Waller MF, Waddington JM. 2006b. Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems 9:278–87.CrossRefGoogle Scholar
  100. Strack M, Ed. 2008. Peatlands and climate change. Canada: University of Calgary. p 223.Google Scholar
  101. Strakova P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R. 2010. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335:501–520.CrossRefGoogle Scholar
  102. Sulman BN, Desai AR, Schroeder NM, Ricciuto D, Barr A, Richardson AD, Flanagan LB, Lafleur PM, Tian H, Chen G, Grant RF, Poulter B, Verbeeck H, Ciais P, Ringeval B, Baker IT, Schaefer K, Luo Y, Weng E. 2012. Impact of hydrological variations on modeling of peatland CO2 fluxes: results from the North American Carbon Program site synthesis. J Geophys Res 117:G01031.CrossRefGoogle Scholar
  103. Talbot J, Roulet NT, Sonnentag O, Moore TR. 2014. Increases in aboveground biomass and leaf area 85 years after drainage in a bog. Botany 92:713–21.CrossRefGoogle Scholar
  104. Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD. 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res. doi: 10.1029/2007JG000496.Google Scholar
  105. Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C. 2001. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11:311–26.Google Scholar
  106. Valentine DW, Holland EA, Schimel DS. 1994. Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 99:1563–71.CrossRefGoogle Scholar
  107. Vasander H, Kettunen A. 2006. Carbon in boreal peatlands. In: Wieder RK, Vitt DH, Eds. Boreal peatland ecosystems. New York: Springer. p 165–94.CrossRefGoogle Scholar
  108. Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–26.CrossRefGoogle Scholar
  109. Vitt DH. 2007. Estimating moss and lichen ground layer net primary production in tundra, peatlands, and forest. In: Fahey TJ, Knapp AK, Eds. Principles and standards for measuring primary production. New York: Oxford University Press. p 82–105.CrossRefGoogle Scholar
  110. Waddington JM, Warner KD, Kennedy GW. 2002. Cutover peatlands: A consistent source of CO2. Global Biogeochem Cycles 16:1002.CrossRefGoogle Scholar
  111. Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. 2015. Hydrological feedbacks in northern peatlands. Ecohydrology 8:113–27.CrossRefGoogle Scholar
  112. Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J R Meteorol Soc 106:85–100.CrossRefGoogle Scholar
  113. Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff L, Chapin CT. 2000. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–78.CrossRefGoogle Scholar
  114. Weltzin JF, Harth C, Bridgham SD, Pastor J, Vonderharr M. 2001. Production and microtopography of bog bryophytes: Response to warming and water-table manipulations. Oecologia 128:557–65.PubMedCrossRefGoogle Scholar
  115. Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C. 2003. Potential effects of warming and drying on peatland plant community composition. Glob Change Biol 9:141–51.CrossRefGoogle Scholar
  116. White JR, Shannon RD, Weltzin JF, Pastor J, Bridgham SD. 2008. Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study. J Geophys Res 113:G00A06.Google Scholar
  117. Whiting GJ, Chanton JP. 1993. Primary production control of methane emission from wetlands. Nature 364:794–5.CrossRefGoogle Scholar
  118. Wickland KP, Neff JC, Aiken GR. 2007. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10:1323–40.CrossRefGoogle Scholar
  119. Wieder KR, Vitt DH, Burke-Scoll M, Scott KD, House M, Vile MA. 2010. Nitrogen and Sulphur deposition and the growth of Sphagnum fuscum in bogs of the Athabasca Oil Sands Region, Alberta. J Limnol 69:161–70.CrossRefGoogle Scholar
  120. Wilczak JM, Oncley SP, Stage SA. 2001. Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–50.CrossRefGoogle Scholar
  121. Young DR. 2007. Estimating aboveground net primary production in shrub–dominated ecosystems. In: Fahey TJ, Knapp AK, Eds. Principles and standards for measuring primary production. New York: Oxford University Press. p 49–62.CrossRefGoogle Scholar
  122. Yrjälä K, Tuomivirta T, Juottonen H, Putkinen A, Lappi K, Tuittila E-S, Penttilä T, Minkkinen K, Laine J, Peltoniemi K, Fritze H. 2011. CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Glob Change Biol 17:1311–20.CrossRefGoogle Scholar
  123. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett 37(13):L13402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rodney A. Chimner
    • 1
    Email author
  • Thomas G. Pypker
    • 1
    • 2
  • John A. Hribljan
    • 1
  • Paul A. Moore
    • 3
  • James M. Waddington
    • 3
  1. 1.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Natural Resource SciencesThompson Rivers UniversityKamloopsCanada
  3. 3.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations