, Volume 20, Issue 5, pp 960–974 | Cite as

Long-Term Release of Carbon Dioxide from Arctic Tundra Ecosystems in Alaska

  • E. S. EuskirchenEmail author
  • M. S. Bret-Harte
  • G. R. Shaver
  • C. W. Edgar
  • V. E. Romanovsky


Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September–December 2013–2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1 and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 to 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.


arctic tundra net ecosystem exchange permafrost soil temperature carbon dioxide methane 



This work was funded by the National Science Foundation Division of Polar Programs Arctic Observatory Network Grant Numbers 856864, 1304271, 0632264, and 1107892. This study was also partially funded by the NSF Alaska Experimental Program to Stimulate Competitive Research award number OIA-1208927. Logistical support was provided by CH2M Hill Polar Services. We thank Diane Huebner, Jackson Drew, and Lola Oliver for assistance with soil C samples. F.S. Chapin III, S.C. Wofsy, and two anonymous reviewers provided valuable comments on an earlier draft of this manuscript.

Supplementary material

10021_2016_85_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
10021_2016_85_MOESM2_ESM.pdf (9 kb)
Supplementary material 2 (PDF 8 kb)
10021_2016_85_MOESM3_ESM.pdf (25 kb)
Supplementary material 3 (PDF 25 kb)


  1. Amiro BD et al. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115 (G4). doi: 10.1029/2010JG001390.
  2. Baldocchi D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere- the state and future of the eddy covariance method. Global Change Biol 20:3600–9.CrossRefGoogle Scholar
  3. Belshe EF, Schuur EAG, Bolker BM. 2013. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol Lett 16(10):1307–15.CrossRefPubMedGoogle Scholar
  4. Björkman MP et al. 2010. Winter carbon dioxide effluxes from Arctic ecosystems: an overview and comparison of methodologies. Global Biogeochem Cycles 24(GB3010):1–10.Google Scholar
  5. Burba GG et al. 2008. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biol 14:1854–76.CrossRefGoogle Scholar
  6. Burba GG, Anderson DA. 2010. Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications. Lincoln, NE: LI-COR.Google Scholar
  7. Chang Y-W et al. 2104. Methane emissions from Alaska in 2012 from CARVE airborne observations. Proc Natl Acad Sci USA 111:16694–9.Google Scholar
  8. Christensen TR. 2014. Understand Arctic methane variability. Nature 509:279–81.CrossRefPubMedGoogle Scholar
  9. Coyne PI, Kelley JJ. 1971. Release of carbon dioxide from frozen soil to the Arctic atmosphere. Nature 234:407–8.CrossRefGoogle Scholar
  10. Dlugokencky E et al. 2009. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:L18803.CrossRefGoogle Scholar
  11. Drotz SH, Sparrman T, Nilsson MB, Schleucher J, Öquist MG. 2010. Both catabolic and anabolic heterotropic microbial activity proceed in frozen soils. Proc Natl Acad Sci USA 107:21046–51.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duarte CM, Lenton TM, Wadhams P, Wassman P. 2012. Abrupt climate change in the Arctic. Nat Clim Change 2:60–2.CrossRefGoogle Scholar
  13. Efron B, Tibshirani R. 1998. An Introduction to the Bootstrap. Boca Raton: Chapman and Hall.Google Scholar
  14. Euskirchen ES, Bret-Harte MS, Scott GJ, Edgar C, Shaver GR. 2012. Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3:1–19.CrossRefGoogle Scholar
  15. Falge E et al. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric Forest Meteorol 107:43–69.CrossRefGoogle Scholar
  16. Fisher JB et al. 2014. Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences 11:4271–88.CrossRefGoogle Scholar
  17. Fratini G, Mauder M. 2014. Towards a consistent eddy covariance processing: an intercomparison of EddyPro and TK3. Atmos Meas Tech 7:2263–3381.CrossRefGoogle Scholar
  18. Hicks Pries CE, Schuur EAG, Crummer KG. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and Δ14C. Global Change Biol 19:649–61.CrossRefGoogle Scholar
  19. Hinzman LD, Kane DL, Gieck RE, Everett KR. 1991. Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19:95–110.CrossRefGoogle Scholar
  20. Hugelius G et al. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–93.CrossRefGoogle Scholar
  21. Jeffries MO, Overland JE, Perovich DK. 2013. The Arctic shifts to a new normal. Phys Today 66:35–40.CrossRefGoogle Scholar
  22. Jorgenson MT, Heiner M. 2004. Ecosystems of Northern Alaska. ABR, Inc. and The Nature Conservancy, Anchorage, AK.Google Scholar
  23. Kade A, Bret-Harte MS, Euskirchen ES, Edgar C, Fulweber R. 2012. Seasonal variations in CO2 flux among various tundra plant communities in Arctic Alaska. J Geophys Res 117:1–11.CrossRefGoogle Scholar
  24. Karhu K et al. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–4.Google Scholar
  25. Inc LI-COR. 2004. LI-7500 CO2/H2O Analyzer Instruction Manual. Lincoln, NE: LI-COR.Google Scholar
  26. Inc LI-COR. 2009. LI-7500A Open-path CO2/H2O Open Path Gas Analyzer Instruction Manual. Lincoln, NE: LI-COR.Google Scholar
  27. Inc LI-COR. 2010a. LI-7200 CO2/H2O Analyzer Instruction Manual. Lincoln, NE: LI-COR.Google Scholar
  28. Inc LI-COR. 2010b. LI-7700 Open Path CH4 Analyzer Instruction Manual. Lincoln, NE: LI-COR.Google Scholar
  29. LI-COR Inc. 2013. EddyPro® 4.2 Help and User’s Guide. (LI-COR, Inc. Lincoln, Nebraska).Google Scholar
  30. Lüers J, Westermann S, Piel K, Boike J. 2014. Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago. Biogeosciences 11:6307–22.CrossRefGoogle Scholar
  31. Massman WJ. 2000. A simple method for estimating frequency response corrections for eddy covariance systems. Agric Forest Meteorol 104(3):185–98.CrossRefGoogle Scholar
  32. Massman WJ. 2001. Reply to comment by Rannik on “A simple method for estimating frequency response corrections for eddy covariance systems”. Agric Forest Meteorol 107:247–51.CrossRefGoogle Scholar
  33. McGuire AD et al. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–55.CrossRefGoogle Scholar
  34. McGuire AD et al. 2012. An assessment of the carbon balance of the Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9:3185–204.CrossRefGoogle Scholar
  35. Mueller CW et al. 2015. Large amounts of labile organic carbon in permafrost soils of Northern Alaska. Global Change Biol 21:2804–17.CrossRefGoogle Scholar
  36. Myers-Smith IH. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–91.CrossRefGoogle Scholar
  37. Myhre GD et al. 2013. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, and others (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.Google Scholar
  38. Natali SM, Schuur EAG, Rubin RL. 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100:488–98.CrossRefGoogle Scholar
  39. Nauta AL et al. 2015. Permafrost collapse after shrub removal shifts tundra ecosystems to a methane source. Nat Clim Change 5:67–70.CrossRefGoogle Scholar
  40. O’Conner FM et al. 2010. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48(RG4005):1–33. doi: 10.1029/2010RG000326.Google Scholar
  41. Oechel WC, Laskowski CA, Burba G, Gioli B, Kalhori AAM. 2014. Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem. J Geophys Res Biogeosci 119:323–39. doi: 10.1002/2013JG002431.CrossRefGoogle Scholar
  42. Osterkamp TE. 2005. The recent warming of permafrost in Alaska. Global Planet Change 49:187–202.CrossRefGoogle Scholar
  43. Osterkamp TE, Jorgenson JC. 2006. Warming permafrost in the Arctic National Wildlife Refuge, Alaska. Permafr Periglac Process 17:65–9.CrossRefGoogle Scholar
  44. Overland JE, Wang M, Walsh JE, Stroeve JC. 2013. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2:68–74.CrossRefGoogle Scholar
  45. Panikov NS, Flanagan PW, Oechel WC, Matepanov MA, Christensen TR. 2006. Microbial activity in soils frozen to below −39°C. Soil Biol Biogeochem 38:785–94.CrossRefGoogle Scholar
  46. Papale D et al. 2006. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 3:571–83.CrossRefGoogle Scholar
  47. Parmentier F-JW et al. 2013. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat Clim Change 3:195–202.CrossRefGoogle Scholar
  48. Reichstein M et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biol 11:1424–39.CrossRefGoogle Scholar
  49. Romanovsky VE, Sergueev DO, Osterkamp TE. 2003. Temporal variations in the active layer and near-surface permafrost temperatures at the long-term observatories in Northern Alaska. In: Phillips M, Springman S, Arenson LU, Eds. Permafrost. Lisse: Swets & Zeitlinger. p 989–94.Google Scholar
  50. Romanovsky VE, Smith SL, Christiansen HH. 2010. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis. Permafr Periglac Process 21:106–16.CrossRefGoogle Scholar
  51. Schuur EAG et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–9.CrossRefPubMedGoogle Scholar
  52. Sen PK. 1968. Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–89.CrossRefGoogle Scholar
  53. Shaver GR, Chapin FSIII. 1991. Production: biomass relationships and element cycling in contrasting arctic vegetation. Ecol Monogr 61(1):1–31.CrossRefGoogle Scholar
  54. Sistla SA et al. 2013. Long-term warming restructures Arctic tundra without changing net carbon storage. Nature 497:615–18.CrossRefPubMedGoogle Scholar
  55. Ueyama M et al. 2013. Seasonal and spatial variations of carbon fluxes of arctic and boreal ecosystems in Alaska. Ecol Appl 23:1798–816.CrossRefPubMedGoogle Scholar
  56. von Fischer JC, Rhew RC, Ames GM, Fosdick BK, von Fischer PE. 2010. Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow. Alaska. J Geophys Res 115. doi: 10.1029/2009JG001283.
  57. Webb EE et al. 2016. Increased wintertime CO2 loss as a result of sustained tundra warming. J Geophys Res 121. doi: 10.1002/2014JG002795.
  58. Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100.CrossRefGoogle Scholar
  59. Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the abilityto detect trend in hydrological series. Hydrol Process 16:1807–29.CrossRefGoogle Scholar
  60. Zona D et al. 2016. Cold season emissions dominate the Arctic tundra methane budget. Proc Natl Acad Sci USA 113:40–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. S. Euskirchen
    • 1
    Email author
  • M. S. Bret-Harte
    • 1
  • G. R. Shaver
    • 2
  • C. W. Edgar
    • 1
  • V. E. Romanovsky
    • 3
    • 4
  1. 1.University of Alaska FairbanksInstitute of Arctic BiologyFairbanksUSA
  2. 2.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  3. 3.University of Alaska FairbanksGeophysical InstituteFairbanksUSA
  4. 4.Tyumen State Oil and Gas UniversityTyumen’Russia

Personalised recommendations