Ecosystem Responses to Fire: Identifying Cross-taxa Contrasts and Complementarities to Inform Management Strategies

Abstract

Changes in fire frequency, extent, and intensity mean that understanding the effects of fire on plants and animals is a primary concern for ecologists and land managers. Given the potentially conflicting fire responses of species both within and across taxonomic groups, prescribing fire regimes based on the response of one or only a few species may have negative consequences for other species. Here, we integrate data collected from a series of independent but complementary studies spanning a 75 + year chronosequence in a semi-arid shrubland ecosystem in south-western Australia to consider how fire management can best promote biodiversity both within and across taxonomic groups (plants, birds, small mammals, and reptiles). Younger fire ages (6–14 years) contained sparse shrubs, large areas of bare ground, and lacked a distinct litter layer and canopy. The oldest vegetation (60–85 years) had a distinct canopy, a well-developed litter layer and cryptogamic crust, higher variability in patch width, and more woody debris. Plant species richness and diversity decreased with time since fire, whereas bird species richness and diversity increased with time since fire, and mammal and reptile species richness and diversity showed no trend. The composition of all four taxonomic groups varied according to time since fire and the presence of 11 species was confined above or below certain fire-age thresholds. Our results support the need to maintain a mix of both younger and older fire ages across the landscape to maximise species diversity, and highlight the particular importance of older fire ages for many species. Future fire management for biodiversity conservation will benefit from identifying and reconciling cross-taxa contrasts and complementarities.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Alba C, Skálová H, McGregor KF, D’Antonio C, Pyšek P. 2014. Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by meta-analysis. J Veget Sci 26:102–13.

    Article  Google Scholar 

  2. Beard JS, Beeston GR, Harvey JM, Hopkins A, Shepherd DP. 2013. The vegetation of Western Australia at the 1:3,000,000 scale. Explanatory memoir. Conserv Sci West Aust 9:1–152.

    Google Scholar 

  3. Benshemesh J. 2007. National recovery plan for malleefowl Leipoa ocellata. South Australia: Department of Environment and Heritage.

    Google Scholar 

  4. BirdLife Australia. 2014. The BirdLife Australia Working List of Australian Birds. Version 1.2. BirdLife Australia http://www.birdlife.org.au/documents/BWL-BirdLife_Australia_Working_List_v1.2.xls

  5. Bond WJ, van Wilgen BW. 1996. Fire and plants. London: Chapman & Hall.

    Google Scholar 

  6. Bowman DMJS, Perry GLW, Higgins SI, Johnson CN, Fuhlendorf SD, Murphy BP. 2016. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philoso Trans R Soc B 371:20150169.

    Article  Google Scholar 

  7. Bowman DMJS. 1998. The impact of Aboriginal landscape burning on the Australian biota. New Phytol 140:385–410.

    Article  Google Scholar 

  8. Braun K. 2006. Fire management: charles darwin reserve. Narrikup: ICS Group.

    Google Scholar 

  9. Bureau of Meteorology. 2014. Climate Data Online. http://www.bom.gov.au/climate/data/

  10. Burivalova Z, Bauert MR, Hassold S, Fatroandrianjafinonjasolomiovazo NT, Koh LP. 2015. Relevance of global forest change data set to local conservation: case study of forest degradation in Masoala National Park, Madagascar. Biotropica 47:267–74.

    Article  Google Scholar 

  11. Callister KE, Griffioen PA, Avitabile SC, Haslem A, Kelly LT, Kenny SA, Nimmo DG, Farnsworth LM, Taylor RS, Watson SJ, Bennett AF, Clarke MF. 2016. Historical maps from modern images: using remote sensing to model and map century-long vegetation change in a fire-prone region. PLoS ONE 11:e0150808.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Capitanio R, Carcaillet C. 2008. Post-fire Mediterranean vegetation dynamics and diversity: a discussion of succession models. For Ecol Manag 255:431–9.

    Article  Google Scholar 

  13. Conlisk E, Syphard AD, Franklin J, Regan HM. 2015. Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model. Ecol Model 301:27–39.

    Article  Google Scholar 

  14. Dalgleish S, van Etten EJB, Stock WD, Knuckey C. 2015. Fuel dynamics and vegetation recovery after fire in a semi-arid Australian shrubland. Int J Wildland Fire 24:613–23.

    Article  Google Scholar 

  15. Davis RA, Doherty TS, van Etten EJB, Radford JQ, Holmes F, Knuckey C, Davis BJ. 2016. Conserving long unburnt vegetation is important for bird species, guilds and diversity. Biodivers Conserv 25:2709–22. doi:10.1007/s10531-016-1196-5.

    Article  Google Scholar 

  16. De Cáceres M, Brotons L, Aquilué N, Fortin M-J. 2013. The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–47.

    Article  Google Scholar 

  17. Di Stefano J, McCarthy MA, York A, Duff TJ, Slingo J, Christie F. 2013. Defining vegetation age class distributions for multispecies conservation in fire-prone landscapes. Biol Conserv 166:111–17.

    Article  Google Scholar 

  18. Di Stefano J, Owen L, Morris R, Duff T, York A. 2011. Fire, landscape change and models of small mammal habitat suitability at multiple spatial scales. Aust Ecol 36:638–49.

    Google Scholar 

  19. Doherty TS, Davis RA, van Etten EJB, Collier N, Krawiec J. 2015a. Response of a shrubland mammal and reptile community to a history of landscape-scale wildfire. Int J Wildland Fire 24:534–43.

    Article  Google Scholar 

  20. Doherty TS, Dickman CR, Nimmo DG, Ritchie EG. 2015b. Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol Conserv 190:60–8.

    Article  Google Scholar 

  21. Fontaine JB, Kennedy PL. 2012. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests. Ecol Appl 22:1547–61.

    Article  PubMed  Google Scholar 

  22. García LV. 2004. Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–63.

    Article  Google Scholar 

  23. Giljohann KM, McCarthy MA, Kelly LT, Regan TJ. 2015. Choice of biodiversity index drives optimal fire management decisions. Ecol Appl 25:264–77.

    CAS  Article  PubMed  Google Scholar 

  24. Gosper CR, Yates CJ, Prober SM, Parsons BC. 2011. Contrasting changes in vegetation structure and diversity with time since fire in two Australian Mediterranean-climate plant communities. Aust Ecol 37:164–74.

    Article  Google Scholar 

  25. Gosper CR, Yates CJ, Prober SM. 2012. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. J Veget Sci 23:1071–81.

    Article  Google Scholar 

  26. Hallam SJ. 1975. Fire and Hearth: a study of European usage and European usurpation in south-western Australia. Canberra: Australian Institute of Aboriginal Studies.

    Google Scholar 

  27. Haverkamp C, Prior LD, Fogliani B, L’Huillier L, Anquez M, Hua Q, Bowman DMJS. 2015. Effect of landscape fires on the demography of the endangered New Caledonian conifer Callitris sulcata. Biol Conserv 191:130–8.

    Article  Google Scholar 

  28. Hobbs RJ, Atkins L. 1990. Fire-related dynamics of a Banksia woodland in south-western Western Australia. Aust J Botany 38:91–110.

    Article  Google Scholar 

  29. Holmes AL, Robinson WD. 2013. Fire mediated patterns of population densities in mountain big sagebrush bird communities. J Wildl Manag 77:737–48.

    Article  Google Scholar 

  30. IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015-4. IUCN http://www.iucnredlist.org

  31. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6:1–11.

    CAS  Article  Google Scholar 

  32. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2011. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge: Cambridge University Press.

    Google Scholar 

  33. Keeley JE. 1986. Resilience of mediterranean shrub communities to fires. In: Dell B, Hopkins A, Lamont BB, Eds. Resilience in mediterranean-type ecosystems. Dordrecht: Junk.

    Google Scholar 

  34. Kelly LT, Bennett AF, Clarke MF, McCarthy MA. 2015. Optimal fire histories for biodiversity conservation. Conserv Biol 29:473–81.

    Article  PubMed  Google Scholar 

  35. Knuckey C, van Etten EJB, Doherty TS. 2016. Effects of long-term fire exclusion and frequent fire on plant community composition: a case study in semi-arid sandplain shrublands. Aust Ecol 41:964–75.

    Article  Google Scholar 

  36. Krawchuk MA, Cumming SG, Flannigan MD. 2008. Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest. Climatic Change 92:83–97.

    Article  Google Scholar 

  37. Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K. 2009. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4:e5102.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lindenmayer DB, Wood JT, Cunningham RB, MacGregor C, Mason C, Michael D, Montague-Drake R, Brown D, Muntz R, Gill AM. 2008. Testing hypotheses associated with bird responses to wildfire. Ecol Appl 18:1967–83.

    Article  PubMed  Google Scholar 

  39. Nakagawa S. 2004. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–5.

    Article  Google Scholar 

  40. Nicholson C. 2007. Charles Darwin Reserve community history. Bush Heritage Australia http://www.bushheritage.org.au/cdr_history/index.html

  41. Nield AP, Enright NJ, Ladd PG. 2016. Fire-stimulated reproduction in the resprouting, non-serotinous conifer Podocarpus drouynianus (Podocarpaceae): the impact of a changing fire regime. Population Ecology 58:179–87.

    Article  Google Scholar 

  42. Nimmo DG, Kelly LT, Spence-Bailey LM, Watson SJ, Haslem A, White JG, Clarke MF, Bennett AF. 2012. Predicting the century-long post-fire responses of reptiles. Global Ecol Biogeogr 21:1062–73.

    Article  Google Scholar 

  43. O’Leary JF. 1990. Post-fire diversity patterns in two subassociations of Californian coastal sage scrub. Journal of Vegetation Science 1:173–80.

    Article  Google Scholar 

  44. Parr CL, Andersen AN. 2006. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv Biol 20:1610–19.

    Article  PubMed  Google Scholar 

  45. Parr CL, Robertston HG, Biggs HC, Chown SL. 2004. Response of African savanna ants to long-term fire regimes. J Appl Ecol 41:630–42.

    Article  Google Scholar 

  46. Parsons BC, Gosper CR. 2011. Contemporary fire regimes in a fragmented and an unfragmented landscape: implications for vegetation structure and persistence of the fire-sensitive malleefowl. Int J Wildl Fire 20:184–94.

    Article  Google Scholar 

  47. Pastro LA, Dickman CR, Letnic M. 2014. Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Global Ecol Biogeogr 23:1146–56.

    Article  Google Scholar 

  48. Pausas JG, Fernández-Muñoz S. 2011. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110:215–26.

    Article  Google Scholar 

  49. Payne AL, Van Vreeswyk AME, Pringle HJR, Leighton KA, Hennig P. 1998. An inventory and condition survey of the Sandstone-Yalgoo-Paynes Find area, Western Australia. South Perth: Agriculture Western Australia.

    Google Scholar 

  50. Pechony O, Shindell DT. 2010. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci 107:19167–70.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Pellegrini AFA, Hedin LO, Staver AC, Govender N. 2015. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry. Bull Ecol Soc Am 96:340–3.

    Article  Google Scholar 

  52. Penman TD, Christie FJ, Andersen AN, Bradstock RA, Cary GJ, Henderson MK, Price O, Tran C, Wardle GM, Williams RJ, York A. 2011. Prescribed burning: how can it work to conserve the things we value? Int J Wildland Fire 20:721–33.

    Article  Google Scholar 

  53. Plavsic MJ. 2014. Proximate and ultimate drivers of small-mammal recolonization after fire: microhabitat conditions, rainfall and species traits. Anim Conserv 17:573–82.

    Article  Google Scholar 

  54. Pons P, Clavero M. 2010. Bird responses to fire severity and time since fire in managed mountain rangelands. Anim Conserv 13:294–305.

    Article  Google Scholar 

  55. Prior LD, McCaw WL, Grierson PF, Murphy BP, Bowman DMJS. 2011. Population structures of the widespread Australian conifer Callitris columellaris are a bio-indicator of continental environmental change. For Ecol Manag 262:252–62.

    Article  Google Scholar 

  56. Saab VA, Powell H. 2005. Fire and avian ecology in North America: process influencing pattern. Stud Avian Biol 30:1–13.

    Google Scholar 

  57. Santos X, Mateos E, Bros V, Brotons L, De Mas E, Herraiz JA, Herrando S, Miño À, Olmo-Vidal JM, Quesada J, Ribes J, Sabaté S, Sauras-Yera T, Serra A, Vallejo VR, Viñolas A. 2014. Is response to fire influenced by dietary specialization and mobility? A comparative study with multiple animal assemblages. PLoS ONE 9:e88224.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sitters H, Di Stefano J, Christie FJ, Sunnucks P, York A. 2015. Bird diversity increases after patchy prescribed fire: implications from a before-after control-impact study. Int J Wildland Fire 24:690–701.

    Article  Google Scholar 

  59. Smith AL, Bull MC, Driscoll DA. 2013. Successional specialization in a reptile community cautions against widespread planned burning and complete fire suppression. J Appl Ecol 50:1178–86.

    Google Scholar 

  60. Smith AL, Meulders B, Bull CM, Driscoll DA. 2012. Wildfire-induced mortality of Australian reptiles. Herpetol Notes 5:233–5.

    Google Scholar 

  61. Trauernicht C, Brook BW, Murphy BP, Williamson GJ, Bowman DMJS. 2015. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol Evolut 5:1908–18.

    Article  Google Scholar 

  62. Valentine LE, Fisher R, Wilson BA, Sonneman T, Stock WD, Fleming PA, Hobbs RJ. 2014. Time since fire influences food resources for an endangered species, Carnaby’s cockatoo, in a fire-prone landscape. Biol Conserv 175:1–9.

    Article  Google Scholar 

  63. van Etten EJ. 2013. Changes to land tenure and pastoral lease ownership in Western Australia’s central rangelands: implications for co-operative, landscape-scale management. Rangel J 35:37–46.

    Article  Google Scholar 

  64. Wang Y, Naumann U, Wright ST, Warton DI. 2012. mvabund - an R package for model-based analysis of multivariate abundance data. Methods Ecol Evolut 3:471–4.

    Article  Google Scholar 

  65. Western Australian Herbarium. 2016. FloraBase—the Western Australian Flora. Kensington: Department of Parks and Wildlife.

    Google Scholar 

  66. Western Australian Museum. 2015. Checklist of the terrestrial vertebrate fauna of Western Australia. Welshpool: Western Australian Museum.

    Google Scholar 

  67. Wilson BA, Kuehs J, Valentine LE, Sonneman T, Wolfe KM. 2014. Guidelines for ecological burning regimes in Mediterranean ecosystems: a case study in Banksia woodlands in Western Australia. Pacific Conserv Biol 20:57–74.

    Google Scholar 

  68. Winton V, Brown V, Leopold M, D’Ovidio B, Yusiharni E, Carson A, Hamlett C. 2016. The first radiometric Pleistocene dates for Aboriginal occupation at Weld Range, inland Mid West, Western Australia. Aust Archaeol 82:60–6.

    Article  Google Scholar 

  69. Woinarski JCZ, Burbidge AA, Harrison P. 2014. The action plan for Australian mammals 2012. Melbourne: CSIRO Publishing.

    Google Scholar 

  70. Wood S. 2006. Generalized Additive Models: an introduction with R. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  71. Wood SN. 2003. Thin plate regression splines. J R Stat Soc 65:95–114.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bush Heritage Australia, Earthwatch Institute Australia, Edith Cowan University, the Gunduwa Regional Conservation Association, and the Holsworth Wildlife Research Endowment for funding this work. Bush Heritage staff, Earthwatch staff, and countless volunteers are thanked for their help with fieldwork. Bush Heritage Australia, the Australian Wildlife Conservancy, and Wanarra station are thanked for providing access to their properties, logistical support, resources, and/or advice. We thank Don Driscoll and two anonymous reviewers for their comments on earlier versions of this manuscript, and Carly Monks for her advice regarding Aboriginal occupation of the region. Animal survey methods were approved by the Edith Cowan University Animal Ethics Committee (5630, 8501, 11226).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tim S. Doherty.

Additional information

Author contributions

Tim S. Doherty conceived the idea and led data analysis and manuscript writing; Tim S. Doherty, Chris Knuckey, and Eddie J. B. van Etten analysed the data; all authors contributed to study design, data collection, and manuscript writing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3135 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doherty, T.S., van Etten, E.J.B., Davis, R.A. et al. Ecosystem Responses to Fire: Identifying Cross-taxa Contrasts and Complementarities to Inform Management Strategies. Ecosystems 20, 872–884 (2017). https://doi.org/10.1007/s10021-016-0082-z

Download citation

Keywords

  • bird
  • disturbance ecology
  • fire ecology
  • mammal
  • pyrodiversity
  • reptile