, Volume 20, Issue 2, pp 237–244 | Cite as

Empiricism and Modeling for Marine Fisheries: Advancing an Interdisciplinary Science

  • Timothy E. EssingtonEmail author
  • Lorenzo Ciannelli
  • Selina S. Heppell
  • Phillip S. Levin
  • Timothy R. McClanahan
  • Fiorenza Micheli
  • Éva E. Plagányi
  • Ingrid E. van Putten
20th Anniversary Paper


Marine fisheries science is a broad field that is fundamentally concerned with sustainability across ecological, economic, and social dimensions. Ensuring the delivery of food, security, equity, and well-being while sustaining ecosystems in the face of rapid change is, by far, the main challenge facing marine fisheries. A tighter integration of modeling and empiricism is needed to confront this challenge. In particular, improved incorporation of empirically grounded and realistic representation of human behaviors into models will greatly enhance our ability to predict likely outcomes under alternative adaptive strategies. Challenges to this integration certainly exist, but many of these can be overcome via improved professional training that reduces cultural rifts between empiricists and modelers and between natural and social sciences, ideally ending the presumption that there is a divide between empiricism and modeling.


marine fisheries modeling interdisciplinarity global change sustainabiity empiricism 



We thank Steve Carpenter and Monica Turner for inviting us to join the special feature. Tim Essington was supported by National Science Foundation Grant OCE-1154648AM001. Tim McClanahan was funded by the John D. and Catherine T. MacArthur Foundation during this study period.


  1. Ainsworth TD, Heron SF, Ortiz JC, Mumber PJ, Greech A, Ogawa D, Eakin CM, Leggat W. 2016. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 353:338–42.CrossRefGoogle Scholar
  2. Allison EH, Perry AL, Badjeck M-C, Neil Adger W, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–96.CrossRefGoogle Scholar
  3. Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T. 2012. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc Biol Sci 279:3843–52.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrews KS, Williams GD, Samhouri JF, Marshall KN, Gertseva V, Levin PS. 2014. The legacy of a crowded ocean: indicators, status, and trends of anthropogenic pressures in the California Current ecosystem. Environ Conserv 42:139–51.CrossRefGoogle Scholar
  5. Ban NC, Alidina HM, Ardron JA. 2010. Cumulative impact mapping: advances, relevance and limitations to marine management and conservation, using Canada’s Pacific waters as a case study. Mar Policy 34:876–86.CrossRefGoogle Scholar
  6. Ban NC, Mills M, Tam J, Hicks CC, Klain S, Stoeckl N, Bottrill MC, Levine J, Pressey RL, Satterfield T, Chan KMA. et al. 2013. A social–ecological approach to conservation planning: embedding social considerations. Front Ecol Environ 11:194–202.CrossRefGoogle Scholar
  7. Barange M, Merino G, Blanchard JL, Scholtens J, Harle J, Allison EH, Allen JI, Holt J, Jennings S. 2014. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat Clim Change 4:211–16.CrossRefGoogle Scholar
  8. Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans R Soc B 367:2979–89.CrossRefGoogle Scholar
  9. Bromham L, Dinnage R, Hua X. 2016. Interdisciplinary research has consistently lower funding success. Nature 534:684–7.CrossRefPubMedGoogle Scholar
  10. Cambell LM. 2005. Overcoming obstacles to interdisciplinary research. Conserv Biol 19:574–7.CrossRefGoogle Scholar
  11. Charles A. 2001. Sustainable fishery systems. Oxford: Blackwell Science. p 370p.Google Scholar
  12. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–51.CrossRefGoogle Scholar
  13. Ciannelli L, Hunsicker M, Beaudreau A, Bailey K, Crowder LB, Finley C, Webb C, Reynolds J, Sagmiller K, Anderies JM, Hawthorne D, Parrish J, Heppell S, Conway F, Chigbu P. 2014. Transdisciplinary graduate education in marine resource science and management. ICES J Mar Sci 71:1047–51.CrossRefGoogle Scholar
  14. Cushing DH. 1996. Towards a science of recruitment in fish populations. Luhe: Ecology Institute. p 175.Google Scholar
  15. Daw TM, Coulthard S, Cheung WW, Brown K, Abunge C, Galafassi D, Peterson GD, McClanahan TR, Omukoto JO, Munyi L. 2015. Evaluating taboo trade-offs in ecosystems services and human well-being. Proc Natl Acad Sci U S A 112:6949–54.CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Oliveira JAA, Butterworth DS. 2005. Limits to the use of environmental indices to reduce risk and/or increase yield in the South African anchovy fishery. Afr J Mar Sci 27:191–203.CrossRefGoogle Scholar
  17. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–9.CrossRefPubMedGoogle Scholar
  18. Drew JA, Henne AP. Conservation biology and traditional ecological knowledge: integrating academic disciplines for better conservation practice. Ecol Soc 2006;11: online.Google Scholar
  19. Dunn DC, Maxwell SM, Boustany AM, Halpin PN. 2016. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc Natl Acad Sci U S A 113:668–73.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fox HE, Christian C, Nordby JC, Pergams OR, Peterson GD, Pyke CR. 2006. Perceived barriers to integrating social science and conservation. Conserv Biol 20:1817–20.CrossRefPubMedGoogle Scholar
  21. Fulton EA, Jones T, Boschetti F, Chapman KL, Little RL, Syme G, Dzidic P, Gorton R, Sporic M, de la Mare W. 2013. Assessing the impact of stakeholder engagement in management strategy evaluation. Int J Econ Manag Eng 3:83–99.Google Scholar
  22. Fulton EA, Smith AD, Smith DC, Johnson P. 2014. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. PLoS ONE 9:e84242.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fulton EA, Smith ADM, Smith DC, van Putten IE. 2011. Human behaviour: the key source of uncertainty in fisheries management. Fish Fish 12:2–17.CrossRefGoogle Scholar
  24. Gaggiotti OE, Bekkevold D, Jorgensen HB, Foll M, Carvalho GR, Andre C, Ruzzante DE. 2009. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63:2939–51.CrossRefPubMedGoogle Scholar
  25. Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JM, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG. 2015. Ocean acidification through the lens of ecological theory. Ecology 96:3–15.CrossRefPubMedGoogle Scholar
  26. Grafton RQ, Arnason R, Bjorndal T, Campbell D, Campbell HF, Clark CW, Connor R, Dupont DP, Hannesson R, Hilborn R, Kirkley JE, Kompas T, Lane DE, Munro GR, Pascoe S, Squires D, Steinshamn SI, Turris BR, Weninger Q. 2006. Incentive-based approaches to sustainable fisheries. Can J Fish Aquat Sci 63:699–710.CrossRefGoogle Scholar
  27. Graybill JK, Dooling S, Shandas V, Withey J, Greve A, Simon G. 2006. A rough guide to interdisciplinarity: graduate student perspectives. Bioscience 56:56.CrossRefGoogle Scholar
  28. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R. 2008. A global map of human impact on marine ecosystems. Science 319:948–52.CrossRefPubMedGoogle Scholar
  29. Hicks CC, Cinner JE, Stoeckl N, McClanahan TR. 2015. Linking ecosystem services and human-values theory. Conserv Biol 29:1471–80.CrossRefPubMedGoogle Scholar
  30. Hicks CC, Levine A, Agrawal A, Basurto X, Breslow SJ, Carothers C, Charnley S, Coulthard S, Dolsak N, Donatuto J, Garcia-Quijano C, Mascia MB, Norman K, Poe MR, Satterfield T, St. Martin K, Levin PS. 2016. Engage key social concepts for sustainability. Science 352:38–40.CrossRefPubMedGoogle Scholar
  31. Hjort J. 1917. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et Proces-verbaux des Réunions. Conseil International pour l’Éxploration de la Mer 20:1–228.Google Scholar
  32. Hoffmann AA, Sgro CM. 2011. Climate change and evolutionary adaptation. Nature 470:479–85.CrossRefPubMedGoogle Scholar
  33. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS. 2010. Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–42.CrossRefPubMedGoogle Scholar
  34. Kroeker KJ, Micheli F, Gambi MC, Martz TR. 2012. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci U S A 108:14515–20.CrossRefGoogle Scholar
  35. Levin PS, Anderson LE. When good fences make bad neighbors: overcoming disciplinary barriers to improve natural resource management. Coast Manag. (in press)Google Scholar
  36. Levin PS, Francis TB, Taylor NG. Thirty-two essential questions for understanding the social-ecological system of forage fish: the case of Pacific herring. Ecosyst Health Sustain 2016;2.Google Scholar
  37. Lewison R, Hobday AJ, Maxwell S, Hazen E, Hartog JR, Dunn DC, Briscoe D, Fossette S, O’Keefe CE, Barnes M, Abecassis M, Bograd S, Bethoney ND, Bailey H, Wiley D, Andrews S, Hazen L, Crowder LB. 2015. Dynamic ocean management: identifying the critical ingredients of dynamic approaches to ocean resource management. Bioscience 65:486–98.CrossRefGoogle Scholar
  38. McClanahan TR, Cinner JE. 2012. Adapting to a changing environment: confronting the consequences of climate change. New York: Oxford University Press.Google Scholar
  39. McClanahan TR, Sebastián CR, Cinner JE. 2016. Simulating the outcomes of resource user- and rule-based regulations in a coral reef fisheries-ecosystem model. Glob Environ Change 38:58–69.CrossRefGoogle Scholar
  40. Merila J, Hendry AP. 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Micheli F, Mumby PJ, Brumbaugh DR, Broad K, Dahlgren CP, Harborne AR, Holmes KE, Kappel CV, Litvin SY, Sanchirico JN. 2014. High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biol Conserv 171:186–94.CrossRefGoogle Scholar
  42. Moon K, Blackman D. 2014. A guide to understanding social science research for natural scientists. Conserv Biol 28:1167–77.CrossRefPubMedGoogle Scholar
  43. Myers RA. 1998. When do environment-recruitment correlations work? Rev Fish Biol Fish 8:285–305.CrossRefGoogle Scholar
  44. Neubauer P, Jensen OP, Hutchings JA, Baum JK. 2013. Resilience and recovery of overexploited marine populations. Science 340:347–9.CrossRefPubMedGoogle Scholar
  45. Nicolson CR, Starfield AM, Kofinas GP, Kruse JA. 2002. Ten heuristics for interdisciplinary modeling projects. Ecosystems 5:376–84.CrossRefGoogle Scholar
  46. Olsen EM, Heupel MR, Simpfendorfer CA, Moland E. 2012. Harvest selection on Atlantic cod behavioral traits: implications for spatial management. Ecol Evol 2:1549–62.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ostrom E. 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325:419–22.CrossRefPubMedGoogle Scholar
  48. Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912–15.CrossRefPubMedGoogle Scholar
  49. Peterson GD, Cumming G, Carpenter SC. 2003. Scenario planning: a tool for conservation in an uncertain future. Conserv Biol 17:358–66.CrossRefGoogle Scholar
  50. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239–42.CrossRefPubMedGoogle Scholar
  51. Plagányi EE, van Putten I, Hutton T, Deng RA, Dennis D, Pascoe S, Skewes T, Campbell RA. Integrating indigenous livelihood and lifestyle objectives in managing a natural resource. Proc Natl Acad Sci U S A 2013Google Scholar
  52. Plagányi EE, van Putten I, Thebaud O, Hobday AJ, Innes J, Lim-Camacho L, Norman-Lopez A, Bustamante RH, Farmery A, Fleming A, Frusher S, Green B, Hoshino E, Jennings S, Pecl G, Pascoe S, Schrobback P, Thomas L. 2014. A quantitative metric to identify critical elements within seafood supply networks. PLoS ONE 9:e91833.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Poe MR, Norman KC, Levin PS. 2014. Cultural dimensions of socioecological systems: key connections and guiding principles for conservation in coastal environments. Conserv Lett 7:166–75.CrossRefGoogle Scholar
  54. Punt AE, A’Mar T, Bond NA, Butterworth DS, de Moor CL, De Oliveira JAA, Haltuch MA, Hollowed AB, Szuwalski C. 2014. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES J Mar Sci 71:2208–20.CrossRefGoogle Scholar
  55. Rossetto M, Micheli F, Saenz-Arroyo A, Montes JAE, De Leo GA, Rochet M-J. 2015. No-take marine reserves can enhance population persistence and support the fishery of abalone. Can J Fish Aquat Sci 72:1503–17.CrossRefGoogle Scholar
  56. Schindler DE, Hilborn R. 2015. Prediction, precaution and policy under global change. Science 347:953–4.CrossRefPubMedGoogle Scholar
  57. Stachura MM, Essington TE, Mantua NJ, Hollowed AB, Haltuch MA, Spencer PD, Branch TA, Doyle MJ. 2014. Linking Northeast Pacific recruitment synchrony to environmental variability. Fish Oceanogr 23:389–408.CrossRefGoogle Scholar
  58. Starfield AM. 1997. A pragmatic approach to modeling for wildlife management. J Wildl Manag 61:261–70.CrossRefGoogle Scholar
  59. Stramma L, Johnson GC, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–8.CrossRefPubMedGoogle Scholar
  60. Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, Munch S. 2012. Detecting causality in complex ecosystems. Science 338:496–500.CrossRefPubMedGoogle Scholar
  61. van Dalen HP, Henkens K. 2012. Intended and unintended consequences of a publish-or-perish culture: a worldwide survey. J Am Soc Inf Sci Technol 63:1282–93.CrossRefGoogle Scholar
  62. van Putten IE, Kulmala S, Thébaud O, Dowling N, Hamon KG, Hutton T, Pascoe S. 2012. Theories and behavioural drivers underlying fleet dynamics models. Fish Fish 13:216–35.CrossRefGoogle Scholar
  63. Walters CJ. 1986. Adaptive management of renewable resources. New York: MacMillan Publishing Company. p 374.Google Scholar
  64. Watson RA, Nowara GB, Hartmann K, Green BS, Tracey SR, Carter CG. 2015. Marine foods sourced from farther as their use of global ocean primary production increases. Nat Commun 6:7365.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Timothy E. Essington
    • 1
    Email author
  • Lorenzo Ciannelli
    • 2
  • Selina S. Heppell
    • 3
  • Phillip S. Levin
    • 4
  • Timothy R. McClanahan
    • 5
  • Fiorenza Micheli
    • 6
  • Éva E. Plagányi
    • 7
  • Ingrid E. van Putten
    • 8
  1. 1.University of WashingtonSchool of Aquatic and Fishery SciencesSeattleUSA
  2. 2.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  3. 3.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA
  4. 4.Northwest Fisheries Science CenterNOAA FisheriesSeattleUSA
  5. 5.Wildlife Conservation Society, Marine ProgramsBronxUSA
  6. 6.Woods Institute for the EnvironmentStanford UniversityMontereyUSA
  7. 7.CSIRO Oceans and AtmosphereBrisbaneAustralia
  8. 8.CSIRO Oceans and AtmosphereHobartAustralia

Personalised recommendations