Skip to main content

Advertisement

Log in

Losing Legacies, Ecological Release, and Transient Responses: Key Challenges for the Future of Northern Ecosystem Science

  • 20th Anniversary Paper
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Northern ecosystem processes play out across scales that are rare elsewhere on contemporary earth: large ranging predator–prey systems are still operational, invasive species are rare, and large-scale natural disturbances occur extensively. Disturbances in the far north affect huge areas of land and are difficult to control or manage. Historically, disturbance patterns and processes ranging across a number of spatio-temporal scales have played an important role in the resilience of northern ecosystems. However, due to interactions with a warming climate, these disturbances are now erasing key legacies of the last millennia of ecosystem processes. Building on the concepts of legacies and cross-scale interactions, we highlight several general conceptual issues that represent key challenges for the future of northern ecosystem science, but that also have relevance to other biomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL. 2014. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob Chang Biol 20:824–34.

    Article  PubMed  Google Scholar 

  • Beck PSA, Goetz SJ, Mack MC, Alexander HD, Jin Y, Randerson JT, Loranty MM. 2011. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob Chang Biol 17:2853–66.

    Article  Google Scholar 

  • Benscoter BW, Greenacre D, Turetsky MR. 2015. Wildfire as a key determinant of peatland microtopography. Can J For Res 45:1132–6.

    Article  Google Scholar 

  • Blanchard JL. 2015. A rewired food web. Nature 527:173–4.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR, Turner MG. 2010. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3:495–7.

    Article  Google Scholar 

  • Eveleigh ES, McCann KS, McCarthy PC, Pollock SJ, Lucarotti CJ, Morin B, McDougall GA, Strongman DB, Huber JT, Umbanhowar J, Faria LDB. 2007. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proc Nat Acad Sci 104:16976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin JF, Lindenmayer DB, MacMahon JA, McKee A, Magnusson J, Perry DA, Waide R, Foster DR. 2000. Threads of continuity: ecosystem disturbances, biological legacies and ecosystem recovery. Conserv Biol Pract 1:8–16.

    Article  Google Scholar 

  • Fridley JD, Sax DF. 2014. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob Ecol Biogeogr 23:1157–66.

    Article  Google Scholar 

  • Halsey LA, Vitt DH, Zoltai SC. 1995. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Clim Chang 30:57–73.

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Chang 72:251–98.

    Article  Google Scholar 

  • Hoekman D. 2010. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91:2819–25.

    Article  PubMed  Google Scholar 

  • Hooper DU, Chapin FSIII, Ewel JJ. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Jafarov EE, Romanovsky VE, Genet H, McGuire AD, Marchenko SS. 2013. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environ Res Lett 8:035030–11.

    Article  Google Scholar 

  • Johnstone JF, Allen CD, Franlin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–78.

    Article  Google Scholar 

  • Johnstone JF, Hollingsworth TN, Chapin FSIII, Mack MC. 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Chang Biol 16:1281–95.

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc R Soc B 282:20151546–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lekevicius E. 2010. Vacant niches in nature, ecology, and evolutionary theory: a mini-review. Ekologija 55:165–75.

    Google Scholar 

  • Louthan AM, Doak DF, Angert AL. 2015. Where and when do species interactions set range limits? Trends Ecol Evol 30:780–92.

    Article  PubMed  Google Scholar 

  • Mann DH, Scott Rupp T, Olson MA, Duffy PA. 2012. Is Alaska’s boreal forest now crossing a major ecological threshold? Arct, Antarct, Alp Res 44:319–31.

    Article  Google Scholar 

  • McCann KS. 2007. Protecting biostructure. Nature 446:29.

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G. 2002. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.

    Article  Google Scholar 

  • Peters DPC, Bestelmeyer BT, Turner MG. 2007. Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10:790–6.

    Article  Google Scholar 

  • Pithan F, Mauritsen T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–4.

    Article  CAS  Google Scholar 

  • Poisot T, Stouffer DB, Gravel D. 2014. Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–51.

    Article  Google Scholar 

  • Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA. 2013. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems 1. Environ Rev 21:322–65.

    Article  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58:501–19.

    Article  Google Scholar 

  • Rigor IG, Wallace JM. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys Res Lett 31:L09401. doi:10.1029/2004GL019492.

    Article  Google Scholar 

  • Rodhe K. 1979. A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. Am Nat 114:648–71.

    Article  Google Scholar 

  • Ruckstuhl KE, Johnson EA, Miyanishi K. 2008. Introduction. The boreal forest and global change. Philos Trans R Soc B 363:2243–7.

    Article  Google Scholar 

  • Sanderson LA, McLaughlin JA, Antunes PM. 2012. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85:329–39.

    Article  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Ann Rev Ecol, Evol, Syst 40:245–69.

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz OJ, Post E, Burns CE, Johnston KM. 2003. Ecosystem responses to global climate change: Moving beyond color mapping. BioScience 53:1199–205.

    Article  Google Scholar 

  • Tunney TD, McCann KS, Lester NP, Shuter BJ. 2014. Effects of differential habitat warming on complex communities. Proc Nat Acad Sci 111:8077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turetsky MR, Amiro BD, Bosch E, Bhatti JS. 2004. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob Biogeochem Cycles 18:GB4014.

  • Turetsky MR, Donahue WF, Benscoter BW. 2011. Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun 2:514–15.

    Article  CAS  PubMed  Google Scholar 

  • Van Cleve K, Chapin FSIII, Dyrness CT, Viereck LA. 1991. Element cycling in taiga forests: state-factor control. Bioscience 41:78–88.

    Article  Google Scholar 

  • Van Hemert C, Flint PL, Udevitz MS, Koch JC, Atwood TC, Oakley KL, Pearce JM. 2015. Forecasting wildlife response to rapid warming in the Alaskan Arctic. BioScience 65:718–28.

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Houegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.

    Article  CAS  PubMed  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann Rev Ecol, Evol, Syst 34:273–309.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The ideas presented here have benefited from discussions with many colleagues as well as funding programs that have promoted collaborative research in the north, including NASA’s Terrestrial Ecosystems ABoVE program, the Government of the Northwest Territories’ Environment and Natural Resources division, the NSERC Discovery program, the Bonanza Creek LTER program supported by the NSF and the U.S. Forest Service, the Changing Cold Regions Network support by NSERC, the Permafrost Carbon Network, and SEARCH’s Permafrost Action Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merritt R. Turetsky.

Additional information

Author contributions

All coauthors contributed to the development of ideas in this paper and to writing. Merritt R. Turetsky led the compilation of the paper. Jill F. Johnstone led the creation of the figure to highlight key issues raised in the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turetsky, M.R., Baltzer, J.L., Johnstone, J.F. et al. Losing Legacies, Ecological Release, and Transient Responses: Key Challenges for the Future of Northern Ecosystem Science. Ecosystems 20, 23–30 (2017). https://doi.org/10.1007/s10021-016-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0055-2

Keywords

Navigation