Ecosystems

, Volume 20, Issue 1, pp 23–30 | Cite as

Losing Legacies, Ecological Release, and Transient Responses: Key Challenges for the Future of Northern Ecosystem Science

  • Merritt R. Turetsky
  • Jennifer L. Baltzer
  • Jill F. Johnstone
  • Michelle C. Mack
  • Kevin McCann
  • Edward A. G. Schuur
20th Anniversary Paper

Abstract

Northern ecosystem processes play out across scales that are rare elsewhere on contemporary earth: large ranging predator–prey systems are still operational, invasive species are rare, and large-scale natural disturbances occur extensively. Disturbances in the far north affect huge areas of land and are difficult to control or manage. Historically, disturbance patterns and processes ranging across a number of spatio-temporal scales have played an important role in the resilience of northern ecosystems. However, due to interactions with a warming climate, these disturbances are now erasing key legacies of the last millennia of ecosystem processes. Building on the concepts of legacies and cross-scale interactions, we highlight several general conceptual issues that represent key challenges for the future of northern ecosystem science, but that also have relevance to other biomes.

Keywords

arctic boreal succession disturbance permafrost wildfire carbon diversity trophic interactions niche 

Notes

ACKNOWLEDGEMENTS

The ideas presented here have benefited from discussions with many colleagues as well as funding programs that have promoted collaborative research in the north, including NASA’s Terrestrial Ecosystems ABoVE program, the Government of the Northwest Territories’ Environment and Natural Resources division, the NSERC Discovery program, the Bonanza Creek LTER program supported by the NSF and the U.S. Forest Service, the Changing Cold Regions Network support by NSERC, the Permafrost Carbon Network, and SEARCH’s Permafrost Action Team.

References

  1. Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL. 2014. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob Chang Biol 20:824–34.CrossRefPubMedGoogle Scholar
  2. Beck PSA, Goetz SJ, Mack MC, Alexander HD, Jin Y, Randerson JT, Loranty MM. 2011. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob Chang Biol 17:2853–66.CrossRefGoogle Scholar
  3. Benscoter BW, Greenacre D, Turetsky MR. 2015. Wildfire as a key determinant of peatland microtopography. Can J For Res 45:1132–6.CrossRefGoogle Scholar
  4. Blanchard JL. 2015. A rewired food web. Nature 527:173–4.CrossRefPubMedGoogle Scholar
  5. Carpenter SR, Turner MG. 2010. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3:495–7.CrossRefGoogle Scholar
  6. Eveleigh ES, McCann KS, McCarthy PC, Pollock SJ, Lucarotti CJ, Morin B, McDougall GA, Strongman DB, Huber JT, Umbanhowar J, Faria LDB. 2007. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proc Nat Acad Sci 104:16976–81.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Franklin JF, Lindenmayer DB, MacMahon JA, McKee A, Magnusson J, Perry DA, Waide R, Foster DR. 2000. Threads of continuity: ecosystem disturbances, biological legacies and ecosystem recovery. Conserv Biol Pract 1:8–16.CrossRefGoogle Scholar
  8. Fridley JD, Sax DF. 2014. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob Ecol Biogeogr 23:1157–66.CrossRefGoogle Scholar
  9. Halsey LA, Vitt DH, Zoltai SC. 1995. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Clim Chang 30:57–73.CrossRefGoogle Scholar
  10. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Chang 72:251–98.CrossRefGoogle Scholar
  11. Hoekman D. 2010. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91:2819–25.CrossRefPubMedGoogle Scholar
  12. Hooper DU, Chapin FSIII, Ewel JJ. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.CrossRefGoogle Scholar
  13. Jafarov EE, Romanovsky VE, Genet H, McGuire AD, Marchenko SS. 2013. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environ Res Lett 8:035030–11.CrossRefGoogle Scholar
  14. Johnstone JF, Allen CD, Franlin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–78.CrossRefGoogle Scholar
  15. Johnstone JF, Hollingsworth TN, Chapin FSIII, Mack MC. 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Chang Biol 16:1281–95.CrossRefGoogle Scholar
  16. Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc R Soc B 282:20151546–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lekevicius E. 2010. Vacant niches in nature, ecology, and evolutionary theory: a mini-review. Ekologija 55:165–75.Google Scholar
  18. Louthan AM, Doak DF, Angert AL. 2015. Where and when do species interactions set range limits? Trends Ecol Evol 30:780–92.CrossRefPubMedGoogle Scholar
  19. Mann DH, Scott Rupp T, Olson MA, Duffy PA. 2012. Is Alaska’s boreal forest now crossing a major ecological threshold? Arct, Antarct, Alp Res 44:319–31.CrossRefGoogle Scholar
  20. McCann KS. 2007. Protecting biostructure. Nature 446:29.CrossRefPubMedGoogle Scholar
  21. Parmesan C, Yohe G. 2002. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.CrossRefGoogle Scholar
  22. Peters DPC, Bestelmeyer BT, Turner MG. 2007. Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10:790–6.CrossRefGoogle Scholar
  23. Pithan F, Mauritsen T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–4.CrossRefGoogle Scholar
  24. Poisot T, Stouffer DB, Gravel D. 2014. Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–51.CrossRefGoogle Scholar
  25. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA. 2013. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems 1. Environ Rev 21:322–65.CrossRefGoogle Scholar
  26. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58:501–19.CrossRefGoogle Scholar
  27. Rigor IG, Wallace JM. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys Res Lett 31:L09401. doi:10.1029/2004GL019492.CrossRefGoogle Scholar
  28. Rodhe K. 1979. A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. Am Nat 114:648–71.CrossRefGoogle Scholar
  29. Ruckstuhl KE, Johnson EA, Miyanishi K. 2008. Introduction. The boreal forest and global change. Philos Trans R Soc B 363:2243–7.CrossRefGoogle Scholar
  30. Sanderson LA, McLaughlin JA, Antunes PM. 2012. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85:329–39.CrossRefGoogle Scholar
  31. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Ann Rev Ecol, Evol, Syst 40:245–69.CrossRefGoogle Scholar
  32. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–9.CrossRefPubMedGoogle Scholar
  33. Schmitz OJ, Post E, Burns CE, Johnston KM. 2003. Ecosystem responses to global climate change: Moving beyond color mapping. BioScience 53:1199–205.CrossRefGoogle Scholar
  34. Tunney TD, McCann KS, Lester NP, Shuter BJ. 2014. Effects of differential habitat warming on complex communities. Proc Nat Acad Sci 111:8077–82.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Turetsky MR, Amiro BD, Bosch E, Bhatti JS. 2004. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob Biogeochem Cycles 18:GB4014.Google Scholar
  36. Turetsky MR, Donahue WF, Benscoter BW. 2011. Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun 2:514–15.CrossRefPubMedGoogle Scholar
  37. Van Cleve K, Chapin FSIII, Dyrness CT, Viereck LA. 1991. Element cycling in taiga forests: state-factor control. Bioscience 41:78–88.CrossRefGoogle Scholar
  38. Van Hemert C, Flint PL, Udevitz MS, Koch JC, Atwood TC, Oakley KL, Pearce JM. 2015. Forecasting wildlife response to rapid warming in the Alaskan Arctic. BioScience 65:718–28.CrossRefGoogle Scholar
  39. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Houegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.CrossRefPubMedGoogle Scholar
  40. Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann Rev Ecol, Evol, Syst 34:273–309.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Merritt R. Turetsky
    • 1
  • Jennifer L. Baltzer
    • 2
  • Jill F. Johnstone
    • 3
  • Michelle C. Mack
    • 4
  • Kevin McCann
    • 1
  • Edward A. G. Schuur
    • 4
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Biology DepartmentWilfrid Laurier UniversityWaterlooCanada
  3. 3.Department of BiologyUniversity of SaskatchewanSaskatoonCanada
  4. 4.Center for Ecosystem Science and Society, and Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations