, Volume 20, Issue 1, pp 69–77 | Cite as

Ecosystem Assembly: A Mission for Terrestrial Earth System Science

  • Steven I. HigginsEmail author
20th Anniversary Paper


Organisms not only respond to their environment but also influence the availability of resources and change environmental conditions. Hence, the impacts of organisms on their environment shape the selective regimes that drive, on ecological time scales, the assembly of ecological communities and, on evolutionary time scales, diversification. Recent studies have drawn attention to the fact that feedbacks between organisms and the environment can prevent or induce catastrophic transitions in ecosystem states and argue that climate change increases the likelihood of such catastrophic regime shifts. Ecologists have very limited ability to predict the likelihood of such regime shifts or the properties of the ecosystems that assemble after such collapses. This is because ecology does not have a theory of ecosystem assembly, nor does it have an established way of translating such a theory into models capable of predicting future ecosystem states. Without knowing these potential endpoints, we cannot develop strategies for coercing ecosystems into desired states, severely constraining our capacity to mitigate climate change and climate change impacts. This paper outlines a roadmap for developing a theory of terrestrial ecosystem assembly. Recent progress in dynamic global vegetation modelling and community assembly provides a useful foundation for a theory of ecosystem assembly. Environmental filtering and limiting similarity are key principles, but to be useful, they need to be linked to resource consumption and environmental modulation, and be more strongly constrained by biophysics and the trade-offs defined by biophysical principles. Such a theory recognises that ecological and evolutionary history ensures that many different ecosystem assemblies are possible at any given point in space and time.


global change mission-driven research regime shifts thresholds trophic dynamics evolutionary legacies earth system models dynamic global vegetation models 



SH acknowledges the Ecological Society of New Zealand for supporting a writing retreat.


  1. Allesina S, Grilli J, Barabás G, Tang S, Aljadeff J, and Maritan A. 2015. Predicting the stability of large structured food webs. Nat Commun 6. doi: 10.1038/ncomms8842.
  2. Anderegg WRL, Anderegg LDL. (2013). Hydraulic and carbohydrate changes in experimental drought—induced mortality of saplings in two conifer species. Tree Physiol 33(3):252–260.Google Scholar
  3. Angeler DG, Allen CR. (2016). Editorial: quantifying resilience. J Appl Ecol 53(3):617–624.Google Scholar
  4. Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, Jacobson J, Colgan MS, Martin RE. (2009). Large-scale impacts of herbivores on the structural diversity of African savannas. Proc Natl Acad Sci USA 106(12):4947–4952.Google Scholar
  5. Baskerville EB, Dobson AP, Bedford T, Allesina S, Anderson TM, Pascual M. (2011). Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLoS Comput Biol 7(12):e1002321.Google Scholar
  6. Bidart-Bouzat MG. (2004). Herbivory modifies the lifetime fitness response of Arabidopsis thaliana to elevated CO2. Ecology 85(2):297–303.Google Scholar
  7. Bond WJ, Maze K, Desmet P. (1995). Fire life histories and the seeds of chaos. Ecoscience 2(3):252–260.Google Scholar
  8. Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, Sogin ML. (2011). Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME J 5(9):1540–1548.Google Scholar
  9. Bowman D. (2012). Conservation: bring elephants to Australia? Nature 482(7383):30.Google Scholar
  10. Bradley KL, Pregitzer KS. (2007). Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends Ecol Evol 22(10):538–547.Google Scholar
  11. Chase J, Leibold M. 2003. Ecological niches: linking classical and contemporary approaches. Interspecific interactions. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  12. Courchamp F, Dunne JA, Le Maho Y, May RM, Thébaud C, Hochberg ME. 2015. Fundamental ecology is fundamental. Trends Ecol Evol 30(1):9–16.CrossRefPubMedGoogle Scholar
  13. Crooks JA. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97(2):153–66.CrossRefGoogle Scholar
  14. da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M, de Athaydes Silva Junior J, Braga AP, de Gonçalves PHL, de Oliveira AAR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187(3):579–91.CrossRefPubMedGoogle Scholar
  15. duToit JT, Rogers KH, Biggs HC, Sinclair ARE, Walker B. 2003. The Kruger experience: ecology and management of Savanna heterogeneity. Washington, DC: Island Press.Google Scholar
  16. Ellenberg H, Leuschner C. (2010). Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart: UTB Uni-Taschenbücher.Google Scholar
  17. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA. 2011. Trophic downgrading of planet earth. Science 333(6040):301–6.CrossRefPubMedGoogle Scholar
  18. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90.CrossRefPubMedGoogle Scholar
  19. Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A. 2003. The importance of land-use legacies to ecology and conservation. Bioscience 53(1):77–88.CrossRefGoogle Scholar
  20. Golley F. 1993. A history of the ecosystem concept in ecology: more than the sum of the parts. New Haven: Yale University Press.Google Scholar
  21. Higgins SI, Bond WJ, Combrink H, Craine JM, February EC, Govender N, Lannas K, Moncreiff G, Trollope WSW. 2012. Which traits determine shifts in the abundance of tree species in a fire-prone savanna? J Ecol 100(6):1400–10.CrossRefGoogle Scholar
  22. Higgins SI, Scheiter S. 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488(7410):209–12.CrossRefPubMedGoogle Scholar
  23. Hoffmann WA, Orthen B, Vargas do Nascimento PK. 2003. Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17(6):720–6.CrossRefGoogle Scholar
  24. Hughes TP, Linares C, Dakos V, van de Leemput IA, van Nes EH. 2013. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol Evol 28(3):149–55.CrossRefPubMedGoogle Scholar
  25. Hunter DO, Britz T, Jones M, Letnic M. 2015. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol Conserv 191:428–35.CrossRefGoogle Scholar
  26. Jackson ST. 2006. Vegetation, environment, and time: the origination and termination of ecosystems. J Veg Sci 17(5):549–57.CrossRefGoogle Scholar
  27. Kooijman SALM. (2000). Dynamic energy and mass budgets in biological systems. Cambridge University Press.Google Scholar
  28. Laughlin DC, Laughlin DE. 2013. Advances in modeling trait-based plant community assembly. Trends Plant Sci 18(10):584–93.CrossRefPubMedGoogle Scholar
  29. Lehmann CER, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP, Williams RJ, Fensham RJ, Felfili J, Hutley LB, Ratnam J, San Jose J, Montes R, Franklin D, Russell-Smith J, Ryan CM, Durigan G, Hiernaux P, Haidar R, Bowman DMJS, Bond WJ. 2014. Savanna vegetation-fire-climate relationships differ among continents. Science 343(6170):548–52.CrossRefPubMedGoogle Scholar
  30. Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60–8.CrossRefPubMedGoogle Scholar
  31. Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A. 2012. Biotic modifiers, environmental modulation and species distribution models. J Biogeogr 39(12):2179–90.CrossRefGoogle Scholar
  32. Makarieva AM, Gorshkov VG. 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11(2):1013–33.CrossRefGoogle Scholar
  33. McGlone MS. 2001. The origin of the indigenous grasslands of southeastern South Island in relation to pre-human woody ecosystems. N Z J Ecol 25(1):1–15.Google Scholar
  34. McMeans BC, McCann KS, Humphries M, Rooney N, Fisk AT. 2015. Food web structure in temporally-forced ecosystems. Trends Ecol Evol 30(11):662–72.CrossRefPubMedGoogle Scholar
  35. Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W, Prentice IC, Thornton PE, Wang S, Wang YP, Weng E, Iversen CM, McCarthy HR, Warren JM, Oren R, Norby RJ. 2015. Using ecosystem experiments to improve vegetation models. Nat Climate Change 5(6):528–34.CrossRefGoogle Scholar
  36. Miranda M, Parrini F, Dalerum F. 2013. A categorization of recent network approaches to analyse trophic interactions. Methods Ecol Evol 4(10):897–905.Google Scholar
  37. Moncrieff GR, Lehmann CER, Schnitzler J, Gambiza J, Hiernaux P, Ryan CM, Shackleton CM, Williams RJ, Higgins SI. 2014a. Contrasting architecture of key African and Australian savanna tree taxa drives intercontinental structural divergence. Glob Ecol Biogeogr 23(11):1235–44.CrossRefGoogle Scholar
  38. Moncrieff GR, Scheiter S, Bond WJ, Higgins SI. 2014b. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New Phytol 201(3):908–15.CrossRefPubMedGoogle Scholar
  39. Monteith J, Unsworth M. 2007. Principles of environmental physics. Amsterdam: Elsevier Science.Google Scholar
  40. Niklas KJ, Spatz HC. 2012. Plant physics. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  41. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Novak M, Wootton JT, Doak DF, Emmerson M, Estes JA, Tinker MT. 2011. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology 92(4):836–46.CrossRefPubMedGoogle Scholar
  43. Owen-Smith N. 1987. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13(3):351–62.CrossRefGoogle Scholar
  44. Pachzelt A, Forrest M, Rammig A, Higgins SI, Hickler T. 2015. Potential impact of large ungulate grazers on African vegetation, carbon storage and fire regimes. Glob Ecol Biogeogr 24(9):991–1002.CrossRefGoogle Scholar
  45. Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–9.CrossRefGoogle Scholar
  46. Phillips JD. 2007. The perfect landscape. Geomorphology 84(3–4):159–69.CrossRefGoogle Scholar
  47. Reynolds JJ, Lambin X, Massey FP, Reidinger S, Sherratt JA, Smith MJ, White A, Hartley SE. 2012. Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia 170(2):445–56.CrossRefPubMedGoogle Scholar
  48. Ricklefs RE. 1987. Community diversity: relative roles of local and regional processes. Science 235(4785):167–71.CrossRefPubMedGoogle Scholar
  49. Scheiter S, Higgins SI. 2012. How many elephants can you fit into a conservation area. Conserv Lett 5(3):176–85.CrossRefGoogle Scholar
  50. Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol 198(3):957–69.CrossRefPubMedGoogle Scholar
  51. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56.CrossRefPubMedGoogle Scholar
  52. Schrama M, Berg MP, Olff H. 2012. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology 93(11):2353–64.CrossRefPubMedGoogle Scholar
  53. Schrama M, Jouta J, Berg MP, Olff H. 2013. Food web assembly at the landscape scale: using stable isotopes to reveal changes in trophic structure during succession. Ecosystems 16(4):627–38.CrossRefGoogle Scholar
  54. Sheffer E, Batterman SA, Levin SA, Hedin LO. 2015. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat Plants 1:15182.CrossRefPubMedGoogle Scholar
  55. Smith KW, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR, Liu YY, Running SW. 2016. Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization. Nat Climate Change 6:306–10.CrossRefGoogle Scholar
  56. Spracklen DV, Arnold SR, Taylor CM. 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–5.CrossRefPubMedGoogle Scholar
  57. Van Der Plas F, Janzen T, Ordonez A, Fokkema W, Reinders J, Etienne RS, Olff H. 2015. A new modeling approach estimates the relative importance of different community assembly processes. Ecology 96(6):1502–15.CrossRefGoogle Scholar
  58. Waldram MS, Bond WJ, Stock WD. 2008. Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11(1):101–12.CrossRefGoogle Scholar
  59. Wardle DA, Barker GM, Yeates GW, Bonner KI, Ghani A. 2001. Introduced browsing mammals in New Zealand natural forests: aboveground and belowground consequences. Ecol Monogr 71(4):587–614.CrossRefGoogle Scholar
  60. Wiles GJ, Bart J, Beck RE Jr, Aguon CF. 2003. Impacts of the brown tree snake: patterns of decline and species persistence in Guam’s avifauna. Conserv Biol 17(5):1350–60.CrossRefGoogle Scholar
  61. Williamson P, International Geosphere Biosphere Programme. (1992). Global change: reducing uncertainties. Global change. International Geosphere–Biosphere Programme—A Study of Global Change, International Council of Scientific Unions.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BotanyUniversity of OtagoDunedinNew Zealand

Personalised recommendations