Advertisement

Ecosystems

, Volume 20, Issue 1, pp 4–13 | Cite as

Taking the Mumbo Out of the Jumbo: Progress Towards a Robust Basis for Ecological Scaling

  • Robert J. ScholesEmail author
20th Anniversary Paper

Abstract

The challenges of the Anthropocene have forced ecologists into the public space, to contend with issues manifest at scales of tens of kilometers and more, unfolding over decades to centuries. Our long fascination with issues of scale is no longer academic. We need to be able to aggregate observations and process understanding derived at the scale of a homogeneous patch to the landscape, region, and the world, and disaggregate changes and limits at the planetary scale to their local outcomes and responses. Several robust approaches to scale-appropriate research and translation in ecology are becoming widely used, but the observation technologies have in some respects outrun both the theory and the general practice for scaling up and scaling down. The project for the next decade is to work simultaneously at multiple scales, using mechanistic, reduced-form, and empirical models to link the scales. The issues related to scale transitions are a manifestation in the spatial and temporal domain of the general problem of ‘emergence,’ which remains suspect in ecology, because it seems to invoke an element of magic. A key challenge for all complex system science, including ecology, is to make the prediction of patterns at one scale from mechanisms operating at different scales into a respectable and reliable practice.

Keywords

scale spatial temporal emergence complexity downscaling upscaling 

References

  1. Allen TFH, Starr TB. 1982. Hierarchy: perspectives for ecological complexity. Chicago: University of Chicago Press.Google Scholar
  2. Annegarn HJ, Otter L, Swap RJ, Scholes RJ. 2002. Southern Africa’s ecosystem in a test-tube; a perspective on the Southern African Regional Science Initiative (SAFARI 2000). S Afr J Sci 98:111–13.Google Scholar
  3. Berelman JE, Kirby JR. 2009. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–57.CrossRefGoogle Scholar
  4. Borenstein E, Kupiec M, Feldman MW, Ruppin E. 2008. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci USA 105:14482–87.Google Scholar
  5. Bousquet P, Ciais P, Peylin P, Ramonet M, Monfray, P. 1999. Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion. J Geophys Res Atmos 104(D21):26161–78.Google Scholar
  6. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89.CrossRefGoogle Scholar
  7. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20(10):3177–90.CrossRefGoogle Scholar
  8. Chave J. 2013. The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol Lett 16(s1):4–16.CrossRefPubMedGoogle Scholar
  9. Ciais P, Rayner P, Chevallier F, Bousquet P, Logan M, Peylin P, Ramonet M. 2010. Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. Dordrecht: Springer. pp 69–92Google Scholar
  10. Coffin DP, Lauenroth WK. 1988. The effects of disturbance size and frequency on a shortgrass plant community. Ecology 69:1609–17.Google Scholar
  11. Cumming GS, Cumming DH, Redman CL. 2006. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol Soc 11(1):14.CrossRefGoogle Scholar
  12. De Kruijter J, Brus D, Bierkens H, Knotters M. 2006. Sampling for natural resource monitoring. Berlin: Springer.CrossRefGoogle Scholar
  13. Engelbrecht CJ, Engelbrecht FA, Dyson LL. 2013. High-resolution model-projected changes in mid-tropospheric closed-lows and extreme rainfall events over southern Africa. Int J Climatol 33(1):173–87.CrossRefGoogle Scholar
  14. Edmunds PJ, Bruno JF. 1996. The importance of sampling scale in ecology: kilometer-wide variation in coral reef communities. Mar Ecol Prog Ser 143(1):165–71.CrossRefGoogle Scholar
  15. Farquhar GD, von Caemmerer S. 1982. Modelling of photosynthetic response to the environment. In: Lange OL, Nobel PS, Osmond CB, Siegler H, Eds. Physiological plant ecology II: water relations a and carbon assimilation. Encyclopedia of plant physiology new series, vol. 12B. Berlin: Springer-Verlag, pp 549–87.Google Scholar
  16. Fletcher JA, Doebeli M. 2009. A simple and general explanation for the evolution of altruism. Proc R Soc Lond B Biol Sci 276(1654):13–19.CrossRefGoogle Scholar
  17. Flint LE, Flint AL. 2012. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol Process 1(1):1–5.CrossRefGoogle Scholar
  18. Forman RT. 1995. Some general principles of landscape and regional ecology. Landsc Ecol 10(3):133–42.CrossRefGoogle Scholar
  19. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415(6872):626–30.CrossRefPubMedGoogle Scholar
  20. Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ, Sgardelis SP. 2004. Uses and abuses of fractal methodology in ecology. Ecol Lett 7(3):254–71.CrossRefGoogle Scholar
  21. Heffernan JB, Soranno PA, Angilletta MJ Jr, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK. 2014. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12(1):5–14.CrossRefGoogle Scholar
  22. Helton AM, Ardón M, Bernhardt ES. 2015. Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. Ecol Lett 18(10):1049–56.CrossRefPubMedGoogle Scholar
  23. Holling CS. 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecol Monogr 62:447–502.CrossRefGoogle Scholar
  24. Hilborn R, Ludwig D. 1993. The limits of applied ecological research. Ecol Appl 3:550–2.PubMedGoogle Scholar
  25. Holyoak M, Leibold MA, Mouquet N, Holt RD, Hoopes M. 2005. A framework for large scale community ecology. Metacommunities: spatial dynamics and ecological communities. Chicago: University of Chicago Press. pp 1–31.Google Scholar
  26. Hubbell SP. 2001. The unified neutral theory of biodiversity and biogeography. Princeton (NJ): Princeton University Press.Google Scholar
  27. Jarvis PG, McNaughton KG. 1986. Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15(1):49.Google Scholar
  28. Kareiva P, Anderson M. 1988. Spatial aspects of species interactions: the wedding of models and experiments. In: Hastings A, Ed. Community ecology. New York: Springer-Verlag. p 38–54.Google Scholar
  29. Landsberg JJ, Waring RH. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95(3):209–28.CrossRefGoogle Scholar
  30. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7(7):601–13.CrossRefGoogle Scholar
  31. Levin SA. 1992. The problem of pattern and scale in ecology. Ecology 73(6):1943–67.CrossRefGoogle Scholar
  32. Levin SA, Paine RT. 1974. Disturbance, patch formation, and community structure. Proc Natl Acad Sci USA 71:2744–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Levy O, Ball BA, Bond-Lamberty B, Cheruvelil KS, Finley AO, Lottig NR, Punyasena SW, Xiao J, Zhou J, Buckley LB, Filstrup CT. 2014. Approaches to advance scientific understanding of macrosystems ecology. Front Ecol Environ 12(1):15–23.CrossRefGoogle Scholar
  34. Lindenmayer DB, Likens GE, Andersen A, Bowman D, Bull CM, Burns E, Dickman CR, Hoffmann AA, Keith DA, Liddell MJ, Lowe AJ. 2012. Value of long-term ecological studies. Austral Ecol 37(7):745–57.CrossRefGoogle Scholar
  35. Lindesay JA, Andeae MO, Goldammer JG, Harris G, Annegarn HJ, Garstang M, Scholes RJ, van Wilgen BW. 1996. International geosphere-biosphere programme/international global atmospheric chemistry SAFARI-92 field experiment: background and overview. J Geophys Res 101:23521–30.CrossRefGoogle Scholar
  36. Magnuson JJ. 1990. Long-term ecological research and the invisible present. BioScience 40(7):495–501.CrossRefGoogle Scholar
  37. Mandelbrot BB. 1977. Fractals: form, chance and dimension. San Francisco: Freeman.Google Scholar
  38. Meentemeyer V, Box EO. 1987. Scale effects in landscape studies. In: Turner MG, Ed. Landscape heterogeneity and disturbance. New York: Springer-Verlag. p 15–34.CrossRefGoogle Scholar
  39. Metzger MJ, Bunce RG, Jongman RH, Sayre R, Trabucco A, Zomer R. 2013. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob Ecol Biogeogr 22(5):630–8.CrossRefGoogle Scholar
  40. Miller JR, Turner MG, Smithwick EA, Dent CL, Stanley EH. 2004. Spatial extrapolation: the science of predicting ecological patterns and processes. BioScience 54(4):310–20.CrossRefGoogle Scholar
  41. O’Neill RV, de Angelis DL, Waide JB, Allen TFH. 1986. A hierarchical concept of ecosystems. Princeton (NJ): Princeton University Press.Google Scholar
  42. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt, Jetz W,Karp DS, McGeoch MA,Obura D Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E,Walpole M, Wegmann M. 2013. Essential biodiversity variables for global earth observation. Science 339:277–8.Google Scholar
  43. Peters DP, Pielke RA, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM. 2004. Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc Natl Acad Sci USA 101(42):15130–5.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Poff NL. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16(2):391–409.Google Scholar
  45. Rastetter EB, Vallino JJ. 2015. Ecosystem’s 80th and the Reemergence of Emergence. Ecosystems 18(5):735–9.CrossRefGoogle Scholar
  46. Rastetter EB, Aber JD, Peters DP, Ojima DS, Burke IC. 2003. Using mechanistic models to scale ecological processes across space and time. BioScience 53(1):68–76.CrossRefGoogle Scholar
  47. Savage VM, Deeds EJ, Fontana W. 2008. Sizing up allometric scaling theory. PLoS Comput Biol 4:17.CrossRefGoogle Scholar
  48. Sayre R, Dangermond J, Frye C, Vaughan R, Aniello P, Breyer S, Cribbs D, Hopkins D, Nauman R, Derrenbacher W, Wright D. 2014. A new map of global ecological land units—an ecophysiographic stratification approach. Washington, DC: Association of American Geographers.Google Scholar
  49. Schneider DC. 2001. The rise of the concept of scale in ecology: the concept of scale is evolving from verbal expression to quantitative expression. BioScience 51(7):545–53.CrossRefGoogle Scholar
  50. Scholes RJ. 2009. Ecosystem services: issues of scale and trade-offs. In: Levin SA, Ed. The Princeton guide to ecology. Princeton (NJ): Princeton University Press. pp 579–83.Google Scholar
  51. Settele J, Scholes RJ, Betts R, Bunn S, Leadley P, Nepstad D, Overpeck JT, Taboada MA. 2014. Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, Eds. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge (UK & NY): Cambridge University Press. pp 271–359.Google Scholar
  52. Simon HA. 1962. The architecture of complexity. Proc Am Philos Soc 106:467–82.Google Scholar
  53. Shugart HH, Smith TM. 1996. A review of forest patch models and their application to global change research. Clim Change 34(2):131–53.CrossRefGoogle Scholar
  54. Soranno PA, Schimel DS. 2014. Macrosystems ecology: big data, big ecology. Front Ecol Environ 12(1):3.CrossRefGoogle Scholar
  55. Soranno PA, Cheruvelil KS, Bissell EG, Bremigan MT, Downing JA, Fergus CE, Filstrup CT, Henry EN, Lottig NR, Stanley EH, Stow CA. 2014. Cross-scale interactions: quantifying multi-scaled cause–effect relationships in macrosystems. Front Ecol Environ 12(1):65–73.CrossRefGoogle Scholar
  56. Tilman D. 1989. Ecological experimentation: strengths and conceptual problems. In: Likens GE, Ed. Long term studies in ecology: approaches and alternatives. New York: Springer-Verlag. p 136–57.CrossRefGoogle Scholar
  57. Turner MG, O’Neill RV, Gardner RH, Milne BT. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3(3–4):153–62.CrossRefGoogle Scholar
  58. Turner MG, Gardner RH, O’Neill RV. 2015. Landscape ecology in theory and practice. 2nd edn. New York: Springer.Google Scholar
  59. Wagner HH, Fortin MJ. 2005. Spatial analysis of landscapes: concepts and statistics. Ecology 86(8):1975–87.CrossRefGoogle Scholar
  60. Weins JA. 1989. Spatial scaling in ecology. Funct Ecol 3(4):385–97.CrossRefGoogle Scholar
  61. Wolkenhauer O, Hofmeyr J-HS. 2007. An abstract cell model that describes the self-organization of cell function in living systems. J Theor Biol 246(3):461–76.CrossRefPubMedGoogle Scholar
  62. Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo JM, Munger JW, Fan SM, Nadelhoffer KJ. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvest forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ 19:911–27.CrossRefGoogle Scholar
  63. Wu J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25(4):367–80.CrossRefGoogle Scholar
  64. Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70(4):439–66.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Global Change and Sustainability Research InstituteUniversity of the WitwatersrandWitsSouth Africa

Personalised recommendations