, Volume 20, Issue 1, pp 14–22 | Cite as

Challenges and Directions for the Advancement of Estuarine Ecosystem Science

  • Jeremy M. TestaEmail author
  • W. Michael Kemp
  • Lora A. Harris
  • Ryan J. Woodland
  • Walter R. Boynton
20TH Anniversary Paper


Estuarine ecosystem ecology is a dynamic field of study that has historically focused on a spectrum of compelling research topics, and here we present a series of perspectives on the major challenges to be overcome and key research questions to be addressed toward making progress over the coming decades. The challenges we identify include (1) maintaining and improving spatially distributed time-series datasets, (2) maximizing innovation by harnessing new technologies, (3) resuscitating experimental ecosystem research for estuaries, (4) integrating diagnostic ecological models into ecosystem research, and (5) improving basic science by linking it to applied research. We also raise a number of key research questions for the field, including (1) how does food web function respond to changing climate and nutrients, (2) what are likely trajectories of ecosystem recovery in response to restoration, (3) how does climate alter seasonality of estuarine ecosystem processes, (4) how do estuaries affect the global carbon budget and what are key feedbacks, and (5) how will tidal wetland ecosystems respond to sea level rise and climate change? Looking ahead, we envision that the field of estuarine ecosystem ecology will continue to build upon its rich tradition to address fundamental research questions with an expanded toolkit and enlightened perspective to focus basic science on the knowledge needs of society.


climate ecology ecosystem estuaries experimental ecosystems food web management modeling time-series carbon budget 



We are grateful for the many estuarine ecosystem ecologists whose invaluable contributions to our field have made it possible for us to consider the perspectives in this essay. Support from several grants and contracts have made this essay possible, including the US National Science Foundation grants (i) DEB1353766 (OPUS; Kemp and Boynton) and (ii) CBET1360415 (WSC; Testa and Kemp), US National Oceanic and Atmospheric Administration (NOAA) grants (iii) NA14OAR4170090 (Harris and Testa) and (iv) NA15NOS4780184 (Testa and Kemp), and (v) National Aeronautics and Space Administration grant NNX14AM37G (Kemp). This paper is contribution #5190 of the University of Maryland Center for Environmental Science.


  1. Borges AV, Delille B, Frankignoulle M. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett. doi: 10.1029/2005GL023053.Google Scholar
  2. Breitburg DL. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25:767–81.CrossRefGoogle Scholar
  3. Cai WJ. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–45.CrossRefGoogle Scholar
  4. Carpenter SR, Brock WA. 2006. Rising variance: a leading indicator of ecological transition. Ecol Lett 9:311–18.CrossRefPubMedGoogle Scholar
  5. Carpenter SR, Bennett EM, Peterson GD. 2006. Scenarios for ecosystem services: an overview. Ecol Soc 11:29.CrossRefGoogle Scholar
  6. Carpenter SR, Chisholm SW, Krebs CJ, Schindler DW, Wright RF. 1995. Ecosystem experiments. Science 269:324–7.CrossRefPubMedGoogle Scholar
  7. Carpenter SR. 1996. Microcosms experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–98.CrossRefGoogle Scholar
  8. Cloern J, Abreu P, Carstensen J, Chauvaud L, Elmgren R, Grall J, Greening H, Olov J, Joansson R, Kahr M, Sherwood E, Exu J, Yin K. 2015. Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Glob Change Biol. doi: 10.1111/gcb.13059.Google Scholar
  9. Conley DJ, Markager S, Andersen J, Ellermann T, Svendsen LM. 2002. Coastal eutrophication and the Danish national aquatic monitoring and assessment program. Estuaries 25:848–61.CrossRefGoogle Scholar
  10. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–15.CrossRefPubMedGoogle Scholar
  11. Craft CB. 2012. Tidal freshwater forest accretion does not keep pace with sea level rise. Glob Change Biol 18:3615–23.CrossRefGoogle Scholar
  12. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–92.CrossRefPubMedGoogle Scholar
  13. De Vries I, Duin RNM, Peeters JCH, Los FJ, Bokhorst M, Laane RWPM. 1998. Patterns and trends in nutrients and phytoplankton in Dutch coastal waters: comparison of time-series analysis, ecological model simulation, and mesocosm experiments. ICES J Mar Sci 55:620–34.CrossRefGoogle Scholar
  14. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–9.CrossRefPubMedGoogle Scholar
  15. Duarte CM, Conley DJ, Carstensen J, Sánchez-Camacho M. 2009. Return to Neverland: shifting baselines affect eutrophication restoration targets. Estuar Coasts 32:29–36.CrossRefGoogle Scholar
  16. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–8.CrossRefGoogle Scholar
  17. Dürr HH, Laruelle GG, van Kempen CM, Slomp CP, Meybeck M, Middelkoop H. 2011. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuar Coasts 34:441–58.CrossRefGoogle Scholar
  18. Harris GP. 1999. Comparison of the biogeochemistry of lakes and estuaries: ecosystem processes, functional groups, hysteresis effects and interactions between macro-and microbiology. Mar Freshw Res 50:791–811.CrossRefGoogle Scholar
  19. Harris LA, Hodgkins CLS, Day MC, Austin D, Testa JM, Boynton WR, Van Der Tak L, Chen NW. 2015. Optimizing recovery of eutropic estuaries: impact of destratification and re-aeration on nutrient and dissolved oxygen dynamics. Ecol Eng 75:470–83.CrossRefGoogle Scholar
  20. Herrmann M, Najjar RG, Kemp WM, Alexander RB, Boyer EW, Cai WJ, Griffith PC, Kroeger KD, McCallister SL, Smith RA. 2015. Net ecosystem production and organic carbon balance of US East Coast estuaries: a synthesis approach. Global Biogeochem Cycles 29:96–111.CrossRefGoogle Scholar
  21. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26.CrossRefGoogle Scholar
  22. Kemp WM, Boynton WR. 2012. Synthesis in estuarine and coastal ecological research: what is it, why is it important, and how do we teach it? Estuar Coasts 35:1–22.CrossRefGoogle Scholar
  23. Kemp WM, Testa JM, Conley DJ, Gilbert D, Hagy JD. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6:2985–3008.CrossRefGoogle Scholar
  24. Kemp WM, Twilley RR, Stevenson JC, Boynton WR, Means JC. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Mar Technol Soc J 17:78–89.Google Scholar
  25. Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S. 2016. Overestimation of marsh vulnerability to sea level rise. Nat Clim Chang. doi: 10.1038/NCLIMATE2909.Google Scholar
  26. Krasting JP, Dunne JP, Stouffer RJ, Hallberg RW. 2016. Enhanced Atlantic sea-level rise relative to the Pacific under high carbon emission rates. Nat Geosci 9:210–14.CrossRefGoogle Scholar
  27. Li M, Lee YJ, Testa JM, Li Y, Ni W, Kemp WM, Di Toro DM. 2016. What drives interannual variability of estuarine hypoxia: climate forcing versus nutrient loading? Geophys Res Lett. doi: 10.1002/2015GL067334.Google Scholar
  28. Likens GE, Ed. 1988. Long-term studies in ecology. New York: Springer.Google Scholar
  29. Lotze HK, Lenihan HS, Bourque BJ et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–9.CrossRefPubMedGoogle Scholar
  30. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77.CrossRefGoogle Scholar
  31. Najjar RG, Pyke CR, Adams MB, Breitburg D, Hershner C, Kemp WM, Howarth R, Mulholland MR, Paolisso M, Secor D, Sellner K. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuar Coast Shelf Sci 86:1–20.CrossRefGoogle Scholar
  32. Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM. 2009. The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay. Estuar Coast Shelf Sci 82:1–18.CrossRefGoogle Scholar
  33. Nixon SW. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219.CrossRefGoogle Scholar
  34. Nixon SW. 1980. Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In: Hamilton P, MacDonald KB, Eds. Estuarine and wetland processes. New York: Plenum Publishing Corp. p 437–525.CrossRefGoogle Scholar
  35. Petersen JE, Kemp WM, Bartleson R, Boynton WR, Chen CC, Cornwell JC, Gardner RH, Hinkle DC, Houde ED, Malone TC, Mowitt WP. 2003. Multiscale experiments in coastal ecology: improving realism and advancing theory. Bioscience 53:1181–97.CrossRefGoogle Scholar
  36. Petersen JE, Kennedy VS, Dennison WC, Kemp WM, Eds. 2009. Enclosed experimental ecosystems and scale: tools for understanding and managing coastal ecosystems. New York: Springer.Google Scholar
  37. Petersen JK, Hansen JW, Laursen MB, Clausen P, Carstensen J, Conley DJ. 2008. Regime shift in a coastal marine ecosystem. Ecol Appl 18:497–510.CrossRefPubMedGoogle Scholar
  38. Popper K. 1968. The logic of scientific discovery. London: Hutchinson & Co.Google Scholar
  39. Regnier P et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607.CrossRefGoogle Scholar
  40. Riebesell U, Czerny J, Bröckel KV, Boxhammer T, Büdenbender J, Deckelnick M, Fischer M, Hoffmann D, Krug SA, Lentz U, Ludwig A. 2013. Technical note: a mobile sea-going mesocosm system–new opportunities for ocean change research. Biogeosciences 10:1835–47.CrossRefGoogle Scholar
  41. Riemann B, Carstensen J, Dahl K, Fossing H, Hansen JW, Jakobsen HH, Josefson AB, Krause-Jensen D, Markager S, Stæhr PA, Timmermann K, Windolf J, Andersen JH. 2015. Recovery of Danish coastal ecosystems after reductions in nutrient loading: A holistic ecosystem approach. Estuar Coasts 39:82–97.CrossRefGoogle Scholar
  42. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP. 2010. Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–57.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Scheffer M, Jeppesen E. 2007. Regime shifts in shallow lakes. Ecosystems 10:1–3.CrossRefGoogle Scholar
  44. Sutherland WJ et al. 2013. Identification of 100 fundamental ecological questions. J Ecol 101:58–67.CrossRefGoogle Scholar
  45. Wintle BA, Runge MC, Bekessy SA. 2010. Allocating monitoring effort in the face of unknown unknowns. Ecol Lett 13:1325–37.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Chesapeake Biological LaboratoryUniversity of Maryland Center for Environmental ScienceSolomonsUSA
  2. 2.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridgeUSA

Personalised recommendations