Ecosystems

, Volume 19, Issue 4, pp 601–614 | Cite as

Precipitation Pattern Determines the Inter-annual Variation of Herbaceous Layer and Carbon Fluxes in a Phreatophyte-Dominated Desert Ecosystem

Article

Abstract

Arid and semi-arid ecosystems dominated by shrubby species are an important component in the global carbon cycle but are largely under-represented in studies of the effect of climate change on carbon flux. This study synthesizes data from long-term eddy covariance measurements and experiments to assess how changes in ecosystem composition, driven by precipitation patterns, affect inter-annual variability of carbon flux and their components in a halophyte desert community dominated by deep-rooted shrubs (phreatophytes, which depend on groundwater as their primary water source). Our results demonstrated that the carbon balance of this community responded strongly to precipitation variations. Both pre-growing season precipitation and growing season precipitation frequency significantly affected inter-annual variations in ecosystem carbon flux. Heavy pre-growing season precipitation (November–April, mostly as snow) increased annual net ecosystem carbon exchange, by facilitating the growth and carbon assimilation of shallow-rooted annual plants, which used spring and summer precipitation to increase community productivity. Sufficient pre-growing season precipitation led to more germination and growth of shallow-rooted annual plants. When followed by high-frequency growing season precipitation, community productivity of this desert ecosystem was lifted to the level of grassland or forest ecosystems. The long-term observations and experimental results confirmed that precipitation patterns and the herbaceous component were dominant drivers of the carbon dynamics in this phreatophyte-dominated desert ecosystem. This study illustrates the importance of inter-annual variations in climate and ecosystem composition for the carbon flux in arid and semi-arid ecosystems. It also highlights the important effect of changing frequency and seasonal pattern of precipitation on the regional and global carbon cycle in the coming decades.

Keywords

eddy covariance net ecosystem carbon exchange ecosystem respiration gross ecosystem productivity water-use strategy halophyte desert community 

Supplementary material

10021_2015_9954_MOESM1_ESM.doc (33 kb)
Supplementary material 1 (DOC 33 kb)

References

  1. Archibald SA, Kirton A, Merwe MR, van der Scholes RJ, Williams CA, Hanan N. 2009. Drivers of inter-annual variability in net ecosystem exchange in a semiarid savanna ecosystem, South Africa. Biogeosciences 6:251–66.CrossRefGoogle Scholar
  2. Asner GP, Archer S, Hughes RF. 2003. Net changes in regional woody vegetation cover and carbon storage in Texas dry-lands, 1937–1999. Glob Change Biol 9:316–35.CrossRefGoogle Scholar
  3. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.CrossRefPubMedGoogle Scholar
  4. Barron-Gafford GA, Scott RL, Jenerette GD, Hamerlynck EP, Huxman TE. 2013. Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion. J Ecol 101:1471–83.CrossRefGoogle Scholar
  5. Barron-Gafford GA, Scott RL, Jenerette GD, Hamerlynck EP, Huxman TE. 2012. Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient. Glob Change Biol 18:1389–400.CrossRefGoogle Scholar
  6. Bell TW, Menzer O, Troyo-Diéquez E, Oechel W. 2012. Carbon dioxide exchange over multiple temporal scales in an arid shrub ecosystem near La Paz, Baja California Sur, Mexico. Glob Change Biol 18:2570–82.CrossRefGoogle Scholar
  7. Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH. 2008. Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–20.CrossRefGoogle Scholar
  8. Dai Y, Zheng XJ, Tang LS, Li Y. 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylom species in the Gurbantonggut Desert. Plant Soil 389:73–87.CrossRefGoogle Scholar
  9. De Graaff MA, Throop HL, Verburg PSJ, Arnone JA, Campos X. 2014. A synthesis of climate and vegetation cover effects on biogeochemical cycling in shrub-dominated drylands. Ecosystems 17:931–45.CrossRefGoogle Scholar
  10. Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR. 1991. Differential utilization of summer rains by desert plants. Oecologia 88:430–4.CrossRefGoogle Scholar
  11. Emmerich WE. 2003. Carbon dioxide fluxes in a semiarid environment with high carbonate soil. Agric For Meteorol 116:91–102.CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69.CrossRefGoogle Scholar
  13. Fan LL, Tang LS, Wu LF, Ma J, Li Y. 2013. The limited role of snow water in the growth and development of ephemeral plants in a cold desert. J Veg Sci 25:681–90.CrossRefGoogle Scholar
  14. Fay PA. 2009. Precipitation variability and primary productivity in water-limited ecosystems: how plants ‘leverage’ precipitation to ‘finance’ growth. New Phytol 181:5–8.CrossRefPubMedGoogle Scholar
  15. Field C, Behrenfeld M, Randerson J, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40.CrossRefPubMedGoogle Scholar
  16. Geladi P, Kowalski BR. 1986. Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17.CrossRefGoogle Scholar
  17. Giasson MA, Cousolle C, Margolis HA. 2006. Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after scarification. Agric For Meteorol 140:23–40.CrossRefGoogle Scholar
  18. Golluscio RA, Sala OE, Lauenroth WK. 1998. Differential use of large rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25.CrossRefGoogle Scholar
  19. Golodets C, Sternberg M, Kigel K, Boeken B, Henkin Z, Seligman NG, Ungar ED. 2013. From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity? Clim Change 119:785–98.CrossRefGoogle Scholar
  20. Gutiérrez JR, Arancio G, Jaksic FM. 2000. Variation in vegetation and seed bank in a Chilean semi-arid community affected by ENSO 1997. J Veg Sci 11:641–8.CrossRefGoogle Scholar
  21. Hamerlynck EP, Scott RL, Barron-Gafford GA, Cavanaugh ML, Moran MS, Huxman TE. 2012. Cool-season whole-plant gas exchange of exotic and native semiarid bunchgrasses. Plant Ecol 213:1229–39.CrossRefGoogle Scholar
  22. Hamerlynck EP, Scott RL, Barron-Gafford GA. 2013. Consequences of cool-season drought-induced plant mortality to Chihuahuan desert grassland ecosystem and soil respiration dynamics. Ecosystems 16:1178–91.CrossRefGoogle Scholar
  23. Hoerling M, Hurrell J, Kumar A, Terray L, Eischeid J, Pegion P, Zhang T, Quan XW, Xu TY. 2011. On North American decadal climate for 2011–2020. J Clim 24:4519–28.CrossRefGoogle Scholar
  24. Holmgren M, Scheffer M. 2001. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–9.CrossRefGoogle Scholar
  25. Huang G, Li Y. 2014. Phenological transition dictates the seasonal dynamics of ecosystem carbon exchange in a desert steppe. J Veg Sci 26:337–47.CrossRefGoogle Scholar
  26. Huxman TE, Snyder K, Tissue D, Leffler AJ, Pockman W, Ogle K, Sandquist D, Potts DL, Schwinning S. 2004. Precipitation pulses and carbon balance in semi-arid and arid ecosystems. Oecologia 141:254–68.CrossRefPubMedGoogle Scholar
  27. Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB. 2005. Ecohydrological implications of woody plant encroachment. Ecology 86:308–19.CrossRefGoogle Scholar
  28. Ivans S, Hipps L, Leffler AJ, Ivans CY. 2006. Response of water vapor and CO2 fluxes in semiarid lands to season and intermittent precipitation pulses. J Hydrometeor 7:995–1010.CrossRefGoogle Scholar
  29. Jenerette GD, Barron-Gafford GA, Guswa AJ, Mcdonnell JJ, Villegas JC. 2012. Organization of complexity in water limited ecohydrology. Ecohydrology 5:184–99.CrossRefGoogle Scholar
  30. Kharin VV, Zwiers FW, Zhang X, Hegerl GC. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–43.CrossRefGoogle Scholar
  31. Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–21.CrossRefGoogle Scholar
  32. Kochendorfer J, Castillo EG, Haas E, Oechel WC, Paw KT. 2011. Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest. Agric For Meteorol 151:544–53.CrossRefGoogle Scholar
  33. Kulmatiski A, Beard KH. 2013. Woody plant encroachment facilitated by increased precipitation intensity. Nat Clim Change 3:833–7.CrossRefGoogle Scholar
  34. Kershaw KA, Looney JH. 1983. Quantitative and dynamic plant ecology. London: Edward Arnold.Google Scholar
  35. Lee X, Massman M, Law B. 2004. Handbook of micrometeorology. A guide for surface flux measurement and analysis. Boston: Kluwer Academic.Google Scholar
  36. Liu R, Pan LP, Jenerette GD, Wang QX, Cieraad E, Li Y. 2012. High efficiency in water use and carbon gain in a wet year for a desert halophyte community. Agric For Meteorol 162–163:127–35.CrossRefGoogle Scholar
  37. Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.CrossRefGoogle Scholar
  38. Luo H, Oechel WC, Hastings SJ, Zulueta R, Qian Y, Kwon H. 2007. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Glob Change Biol 13:386–96.CrossRefGoogle Scholar
  39. Ma J, Liu R, Tang LS, Lan ZD, Li Y. 2014. A downward CO2 flux seems to have nowhere to go. Biogeosciences 11:6251–62620.CrossRefGoogle Scholar
  40. Ma J, Zheng XJ, Li Y. 2012. The response of CO2 flux to rain pulses at a saline desert. Hydrol Process 26:4029–37.CrossRefGoogle Scholar
  41. Ma S, Baldocchi DD, Xu L, Hehn T. 2007. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147:157–71.CrossRefGoogle Scholar
  42. Morgenstern K, Black TA, Humphreys ER, Griffis TJ, Drewitt GB, Cai T, Nesic Z, Spittlehouse DL, Livingston NJ. 2004. Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric For Meteorol 123:201–19.CrossRefGoogle Scholar
  43. Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–52.CrossRefGoogle Scholar
  44. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB. 2001. Consistent land-and atmosphere-based U.S. carbon sink estimates. Science 292:2316–20.CrossRefPubMedGoogle Scholar
  45. Peng SS, Piao SL, Shen ZH, Ciais P, Sun ZZ, Chen SP, Bacour C, Peylin P, Chen AP. 2013. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agric For Meteorol 178:46–55.CrossRefGoogle Scholar
  46. Phillips DL, Gregg JW. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–9.CrossRefPubMedGoogle Scholar
  47. Polis GA, Hurd SD, Jackson CT, Sánchez Piñero F. 1997. El Niño effects on the dynamics and control of an island ecosystem in the Gulf of California. Ecology 78:1884–97.Google Scholar
  48. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY. 2014. Contribution of semi-arid ecosystem to interannual variability of the global carbon cycle. Nature 509:600–3.CrossRefPubMedGoogle Scholar
  49. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–39.CrossRefGoogle Scholar
  50. Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig J, Irvine J, Joffre R, Law B, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob Biogeochem Cycles 17:104. doi:10.1029/2003GB002035.CrossRefGoogle Scholar
  51. Reynolds JF, Kemp PR, Ogle K, Fernandez RJ. 2004. Modifying the ‘pulse-reserve’ paradigm for desert of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210.CrossRefPubMedGoogle Scholar
  52. Ruimy A, Jarvis PG, Baldocchi DD, Saugier B. 1995. CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26:1–51.CrossRefGoogle Scholar
  53. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 247:1043–8.CrossRefPubMedGoogle Scholar
  54. Schultz NM, Griffis TJ, Lee XH, Baker JM. 2011. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid commun Mass Spectrom 25:3360–8.CrossRefPubMedGoogle Scholar
  55. Schwinning S, Sala OE, Loik ME, Ehleringer JR. 2004. Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141:191–3.CrossRefPubMedGoogle Scholar
  56. Scott RL, Huxman TE, Barron-Gafford GA, Jenerette GD, Young JM, Hamerlynck EP. 2014. When vegetation change alters ecosystem water availability. Glob Change Biol 20:2198–210.CrossRefGoogle Scholar
  57. Scott RL, Shuttleworth WJ, Goodrich DC, Maddock T. 2000. The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agric For Meteorol 105:241–56.CrossRefGoogle Scholar
  58. Shi Y, Gao XJ, Wu J, Giorgi F. 2011. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model. Environ Res Lett 6:045401.CrossRefGoogle Scholar
  59. Svejcar T, Angell R, Bradford JA, Dugas W, Emmerich W, Frank AB, Gilmanov T, Haferkamp M, Johnson DA, Mayeux H. 2008. Carbon fluxes on North American Rangelands. Rangel Ecol Manag 61:465–74.CrossRefGoogle Scholar
  60. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML. 2000. Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300.CrossRefGoogle Scholar
  61. UNSO/UNDP (1997) Aridity zones and dryland populations: an assessment of population levels in the world’s drylands. New York, UNSO/UNDP.Google Scholar
  62. Verburg PJ, Arnone JA, Obrist D, Evans RD, Leroux-Swarthout D, Johnson DW, Luo Y, Coleman JS. 2004. Net ecosystem carbon exchange in two experimental grassland ecosystems. Glob Change Biol 10:498–508.CrossRefGoogle Scholar
  63. Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapor transfer. Q J R Meteorol Soc 106:85–100.CrossRefGoogle Scholar
  64. Wesely ML, Hart RL. 1985. Variability of short-term eddy-correlation estimates of mass exchange. In: Hutchision BA, Hicks BB, Eds. The forest-atmosphere interaction. Dordrecht: Reidel. p 591–612.CrossRefGoogle Scholar
  65. Wilczak JM, Oncley SP, Stage SA. 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorl 99:127–50.CrossRefGoogle Scholar
  66. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S. 2002. Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–43.CrossRefGoogle Scholar
  67. Wohlfahrt G, Fenstermaker LF, Arnone JA. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14:1475–87.CrossRefGoogle Scholar
  68. Wu Y, Zhou H, Zheng XJ, Li Y, Tang LS. 2014. Seasonal changes in the water use strategies of three co-occurring desert shrubs. Hydrol Process 28:6265–75.CrossRefGoogle Scholar
  69. Xu H, Li Y. 2006. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil 285:5–17.CrossRefGoogle Scholar
  70. Xu H, Li Y, Xu GQ, Zou T. 2007. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ 30:399–409.CrossRefPubMedGoogle Scholar
  71. Xu LK, Baldocchi DD. 2004. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 1232:79–96.CrossRefGoogle Scholar
  72. Zhang XY, Cong ZT. 2014. Trends of precipitation intensity and frequency in hydrological regions of China from 1956 to 2005. Glob Planet Chang 117:40–51.CrossRefGoogle Scholar
  73. Zhou HF, Zheng XJ, Zhou BJ, Dai Q, Li Y. 2012. Sublimation over seasonal snowpack at the southeastern edge of a desert in central Eurasia. Hydrol Process 26:3911–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  2. 2.Landcare ResearchLincolnNew Zealand
  3. 3.Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands

Personalised recommendations