Skip to main content

Advertisement

Log in

Effect of Chronic Versus Pulse Perturbations on a Marine Ecosystem: Integration of Functional Responses Across Organization Levels

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Human impacts accelerate the intensity and frequency of perturbations on ecosystems; approaches that integrate responses across organization levels are, however, lacking, particularly in the ocean. We experimentally simulated the frequency of fertilization (‘chronic’ versus ‘pulse’ events) in orthogonal combinations of two intensities (‘large’ versus ‘moderate’ fertilization) to determine physiological and biological responses by the seagrass Cymodocea nodosa and associated flora (epiphytes and green seaweeds, specifically Caulerpa prolifera), as well as functional changes (community primary and secondary productivity) at the ecosystem level. We predicted that the absence of recovery time from chronic perturbation would more severely affect responses at population and ecosystem levels relative to discrete events (pulses). Nutrient enrichment increased the biomass of C. prolifera irrespective of its frequency, whereas seagrass biomass and shoot density particularly decreased under a chronic scenario. These demographic responses were connected with varying photo-physiological performance of both C. nodosa and C. prolifera. Fertilization, regardless of its intensity and frequency, decreased the maximum photosynthetic rate of C. nodosa, concomitant with increased pigments, particularly under chronic fertilization, and decreased photoprotective (phenols) compounds. In contrast, fertilization boosted the maximum photochemical yield of C. prolifera, in addition to an increase in pigments and photoprotective compounds. Community primary and secondary productivity, however, did not vary under fertilization of varying intensity and frequency. In summary, fertilization precipitated population-level changes in physiological and biological attributes of vegetation. However, fertilization effects did not entirely cascade into ecosystem-level processes, that is, ecosystem productivity, which suggests a functional compensation (that is, increased algal performance to offset losses of seagrass production) during the initial stages of fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Antón A, Cebrián J, Heck K, Duarte CM, Sheehan KL, Miller MEC, Foster CD. 2011. Decoupled effects (positive to negative) of nutrient enrichment on ecosystem services. Ecol Appl 21:991–1009.

    Article  PubMed  Google Scholar 

  • Barberá C, Tuya F, Boyra A, Sánchez-Jerez P, Blanch I, Haroun RJ. 2005. Spatial variation in the structural parameters of Cymodocea nodosa seagrass meadows in the Canary Islands: a multiscaled approach. Bot Mar 48:122–6.

    Article  Google Scholar 

  • Beer S, Björk M, Gademann R, Ralph PJ. 2001. Measurements of photosynthetic rates in seagrasses. In: Short FT, Coles R, Eds. Global seagrass research methods. Amsterdam: Elsevier. p 183–98.

    Chapter  Google Scholar 

  • Benedetti-Cecchi L. 2003. The importance of the variance around the mean effect size of ecological processes. Ecology 84:2335–46.

    Article  Google Scholar 

  • Bryars S, Collings G, Miller D. 2011. Nutrient exposure cause epiphytic changes and coincident declines in two temperate seagrasses. Mar Ecol Prog Ser 441:89–103.

    Article  CAS  Google Scholar 

  • Burkholder JM, Tomasko D, Touchette BW. 2007. Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72.

    Article  Google Scholar 

  • Cabaço S, Apostolaki ET, García-Marín P, Gruber R, Hernández I, Martínez-Crego B, Mascaró O, Pérez M, Prathep A, Robinson C, Romero J, Schmidt AL, Short FT, van Tussenbroek BI, Santos R. 2013. Effects of nutrient enrichment on seagrass population dynamics: evidence and synthesis from the biomass–density relationships. J Ecol 101:1552–62.

    Article  Google Scholar 

  • Cherwin K, Knapp A. 2012. Unexpected patterns of sensitivity to drought in semi-arid grasslands. Oecologia 169:845–52.

    Article  PubMed  Google Scholar 

  • Collado-Vides L. 2002. Morphological plasticity of Caulerpa prolifera (Caulerpales, Chlorophyta) in relation to growth form in a coral reef lagoon. Bot Mar 45:123–29.

    Article  Google Scholar 

  • Collier CJ, Waycott M, Ospina AG. 2012. Responses of four Indo-West Pacific seagrass species to shading. Mar Pollut Bull 65:342–54.

    Article  CAS  PubMed  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–91.

    Article  CAS  PubMed  Google Scholar 

  • Duarte CM, Dennison WC, Orth RJ, Carruthers TJB. 2008. The charisma of coastal ecosystems. Est Coast 31:233–8.

    Article  Google Scholar 

  • Durako MJ, Kunzelman JI, Kenworthy WJ, Hammerstrom KK. 2003. Depth related variability in the photobiology of two populations of Halophila johnsonii and Halophila decipiens. Mar Biol 142:1219–28.

    Google Scholar 

  • Edgar GJ. 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. J Exp Mar Biol Ecol 137:195–214.

    Article  Google Scholar 

  • Espino F, Tuya F, Brito A, Haroun RJ. 2011. Ichthyofauna associated with Cymodocea nodosa meadows in the Canarian Archipelago (central eastern Atlantic): community structure and nursery role. Cienc Mar 37:157–74.

    Article  Google Scholar 

  • Figueroa FL, Israel A, Neori A, Martínez B, Malta E, Ang P, Inken S, Marquardt R, Korbee N. 2009. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): responses to short-term stress. Aquat Biol 7:173–83.

    Article  Google Scholar 

  • Folin O, Ciocalteu V. 1927. On tyrosine and tryptophane determinations in proteins. J Biol Chem 12:239–43.

    Google Scholar 

  • Fourqueran JW, Zieman JC, Powell GVN. 1992. Phosphorus limitation of primary production in Florida Bay: evidence from C:N: P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr 37:162–71.

    Article  Google Scholar 

  • García-Sánchez M, Korbee N, Pérez-Ruzafa M, Marcos C, Domínguez B, Figueroa FL, Pérez-Ruzafa A. 2012. Physiological response and photoacclimation capacity of Caulerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson meadows in the Mar Menor lagoon (SE Spain). Mar Environ Res 79:37–47.

    Article  PubMed  Google Scholar 

  • Gartner A, Tuya F, Lavery PS, McMahon K. 2013. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J Exp Mar Biol Ecol 439:143–51.

    Article  Google Scholar 

  • Gil M, Armitage AR, Fourqurean JW. 2006. Nutrient impacts on epifaunal density and species composition in a subtropical seagrass bed. Hydrobiologia 569:437–47.

    Article  CAS  Google Scholar 

  • Goecker ME, Heck KL, Valentine JF. 2005. Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians. Mar Ecol Prog Ser 286:239–48.

    Article  Google Scholar 

  • Gómez-Pinchetti JL, del Campo Fernández E, Moreno P, García Reina G. 1998. Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). J Appl Phycol 10:383–9.

    Article  Google Scholar 

  • Grzymski J, Johnsen G, Sakshaug E. 1997. The significance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae. J Phycol 33:408–14.

    Article  Google Scholar 

  • Heck KL, Valentine JF, Pennock JR, Chaplin G, Spitzer PM. 2006. Effects of nutrient enrichment and grazing on shoalgrass Halodule wrightii and its epiphytes: results of a field experiment. Mar Ecol Prog Ser 326:145–56.

    Article  CAS  Google Scholar 

  • Heck KL, Carruthers TJB, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11:1198–210.

    Article  Google Scholar 

  • Holling CS. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23.

    Article  Google Scholar 

  • Holmer M, Marbà N, Lamote M, Duarte CM. 2009. Deterioration of sediment quality in seagrass meadows (Posidonia oceanica) invaded by macroalgae (Caulerpa sp.). Est Coast 32:456–66.

    Article  CAS  Google Scholar 

  • Hughes AR, Bando KJ, Rodriguez LF, Williams SL. 2004. Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Mar Ecol Prog Ser 282:87–99.

    Article  Google Scholar 

  • Jassby A, Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–7.

    Article  CAS  Google Scholar 

  • Kinney EL, Valiela I. 2013. Changes in δ15N in salt marsh sediments in a long-term fertilization study. Mar Ecol Prog Ser 477:41–52.

    Article  CAS  Google Scholar 

  • Lapointe BE, Barile PJ, Littler MM, Littler DS. 2005. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4:1106–22.

    Article  CAS  Google Scholar 

  • Leoni V, Vela A, Pasqualini V, Pergent-Martini C, Pergent G. 2008. Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: a review. Aquat Conserv 18:202–20.

    Article  Google Scholar 

  • Malta EJ, Ferreira DG, Vergara JJ, Pérez-Lloréns JL. 2005. Nitrogen load and irradiance affect morphology, photosynthesis and growth of Caulerpa prolifera (Bryopsidales: Chlorophyta). Mar Ecol Prog Ser 298:101–14.

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson G. 2000. Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–68.

    Article  CAS  PubMed  Google Scholar 

  • Morris EP, Peralta G, Benavente J, Freitas R, Rodrigues AM, Quintino V, Álvarez O, Valcárcel-Pérez N, Vergara JJ, Hernández I, Pérez-Lloréns JL. 2009. Caulerpa prolifera stable isotope ratios reveal anthropogenic nutrients within a tidal lagoon. Mar Ecol Prog Ser 390:117–28.

    Article  CAS  Google Scholar 

  • Murphy SM, Wimp GM, Lewis D, Denno RF. 2012. Nutrient presses and pulses differentially impact plants, herbivores, detritivores and their natural enemies. PLoS One 7(8):e43929.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliva S, Mascaró O, Llagostera I, Pérez M, Romero J. 2012. Selection of metrics based on the seagrass Cymodocea nodosa and development of a biotic index (CYMOX) for assessing ecological status of coastal and transitional waters. Estuar Coast Shelf Sci 114:7–17.

    Article  CAS  Google Scholar 

  • Pérez-Ruzafa A, Marcos C, Bernal CM, Quintino V, Freitas R, Rodrigues AM, Garcia-Sánchez M, Pérez-Ruzafa I. 2012. Cymodocea nodosa vs. Caulerpa prolifera: causes and consequences of a long-term history of interaction in macrophyte meadows in the Mar Menor coastal lagoon (Spain, southwestern Mediterranean). Estuar Coast Shelf Sci 110:101–15.

    Article  Google Scholar 

  • Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC. 2009. Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemicals. Biol Invasions 9:361–8.

    Article  Google Scholar 

  • Ritchie R. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46:115–26.

    Article  CAS  Google Scholar 

  • Russell BD, Harley CDG, Wernberg T, Mieszkowska N, Widdicombe S, Hall-Spencer JM, Connell SD. 2012. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems. Biol Lett 8:164–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Snyder KA, Tartowski SL. 2006. Multi-scale temporal variation in water availability: implications for vegetation dynamics in arid and semi-arid ecosystems. J Arid Environ 65:219–34.

    Article  Google Scholar 

  • Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Pell A, Riha S, Ngoze S, Verchot L, Mbugua D, Skjemstad J, Schafer T. 2007. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Change Biol 13:1–20.

    Article  Google Scholar 

  • Terrados J, Duarte CM, Kenworthy WJ. 1997. Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. Mar Ecol Prog Ser 148:263–8.

    Article  Google Scholar 

  • Tuya F, Hernández-Zerpa H, Espino F, Haroun RJ. 2013a. Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria (Eastern Atlantic): interactions with the green algae Caulerpa prolifera. Aquat Bot 105:1–6.

    Article  Google Scholar 

  • Tuya F, Viera-Rodríguez MA, Guedes R, Espino F, Haroun R, Terrados J. 2013b. Seagrass responses to nutrient enrichment depend on clonal integration, but not flow-on effects on associated biota. Mar Ecol Prog Ser 490:23–35.

    Article  CAS  Google Scholar 

  • Tuya F, Ribeiro-Leite L, Arto-Cuesta N, Coca J, Haroun R, Espino F. 2014a. Decadal changes in the structure of Cymodocea nodosa seagrass meadows: natural vs. human influences. Estuar Coast Shelf Sci 137:41–9.

    Article  CAS  Google Scholar 

  • Tuya F, Png-Gonzalez L, Riera R, Haroun R, Espino F. 2014b. Ecological structure and function differ between habitats dominated by seagrasses and green seaweeds. Mar Environ Res 98:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Valentine JF, Heck KL. 2001. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. J Exp Mar Biol Ecol 258:65–86.

    Article  CAS  PubMed  Google Scholar 

  • Waycott M, Duarte C, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck K, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White KS, Westera MB, Kendrick GA. 2011. Spatial patterns in fish herbivory in a temperate Australian seagrass meadow. Estuar Coast Shelf Sci 93:366–74.

    Article  Google Scholar 

Download references

Acknowledgements

Fernando Tuya was supported by the MINECO ‘Ramón y Cajal’ program. Part of this study was performed through the project ECOSERVEG (BEST initiative, Voluntary Scheme for Biodiversity and Ecosystem Services in Territories of the EU Outermost Regions and Oversees Countries and Territories, Grant No. 07.032700/2012/635752/SUB/B2) and the Spanish MINECO ‘Plan Nacional’ (CGL 2011-23833, ANTROTIDAL). The research staff was partially supported by the Campus Atlántico Tricontinental. We acknowledge Tony Sánchez for his help during fieldwork. Iacopo Bertocci and several anonymous reviewers provided positive criticism on previous drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tuya.

Additional information

Author contributions

FT and FE conceived the study; FT, SB, MAVR, RG, RR, RH, and FE performed the research; FT analyzed the data; FT and FE contributed new methods or models; and FT wrote the paper (all authors contributed to readjustments of the paper).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuya, F., Betancor, S., Viera-Rodríguez, M.A. et al. Effect of Chronic Versus Pulse Perturbations on a Marine Ecosystem: Integration of Functional Responses Across Organization Levels. Ecosystems 18, 1455–1471 (2015). https://doi.org/10.1007/s10021-015-9911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9911-8

Keywords

Profiles

  1. Rodrigo Riera
  2. Ricardo Haroun