Skip to main content

Long-term Wood Production in Water-Limited Forests: Evaluating Potential CO2 Fertilization Along with Historical Confounding Factors

Abstract

Increased aridity may have severe effects on productivity of dry forests. However, it remains unclear to what degree the positive effects of elevated CO2 (both increased carboxylation rates and enhanced water-use efficiency) may offset the negative effects of drought and climate warming. In forest ecosystems, it is particularly challenging to evaluate CO2 effects on productivity because the impacts of climate variability, competition, and management, combine to have longlasting effects on stand-level productivity. Here we address this problem using a unique long-term database containing repeated inventories of wood biomass for every decade from 1912 to 2002 in a pine forest (Pinus pinaster Ait.) in central Spain (≈7,500 ha.). The approach is based upon a combination of statistical analyses of long-term historical management data and mechanistic modeling which allows us to evaluate the effects of potential CO2 fertilization, climate, and stand structure on woody net primary production (W-NPP). We found a significant negative effect of drought on W-NPP during the first half of the twentieth century that diminishes at the turn of the century. Simulations with a process-based ecosystem model, ORCHIDEE, suggest that wood production under conditions that included CO2 fertilization produced a more highly correlated long-term W-NPP than simulations keeping CO2 values in preindustrial levels. Interestingly, however, the CO2 effect was only apparent when accounting for confounding factors such as competition and management legacies. Identifying CO2 fertilization on forest growth is a critical issue, and requires partitioning CO2 effects from confounding factors that have jointly shaped stand dynamics and carbon balance during the twentieth century.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–70.

    CAS  Article  PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H and others 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–84.

    Article  Google Scholar 

  • Arrabal C, Cortijo M, de Simón BF, García Vallejo MC, Cadahía E. 2005. Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition. Biochem Syst Ecol 33:1007–16.

    CAS  Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Netherlands: Springer, pp. 221–224

  • Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Francesca Cotrufo M. 2013. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol 197:544–54.

    CAS  Article  PubMed  Google Scholar 

  • Berger U, Hildenbrandt H, Grimm V. 2004. Age-related decline in forest production: modelling the effects of growth limitation, neighbourhood competition and self-thinning. J Ecol 92:846–53.

    Article  Google Scholar 

  • Bert D, Danjon F. 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For Ecol Manag 222:279–295.

  • Bogino SM, Bravo F. 2008. Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65:506–506.

    Article  Google Scholar 

  • Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–9.

    CAS  Article  PubMed  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–82.

    CAS  Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM. 2004. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–77.

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N and others 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.

    CAS  Article  PubMed  Google Scholar 

  • Ciais P, Schelhaas MJ, Zaehle S. 2008. Carbon accumulation in European forests. Nat Geosci 1:425–9.

    CAS  Article  Google Scholar 

  • Coomes D, Flores O, Holdaway R, Jucker T, Lines ER, Vanderwel MC. 2014. Wood production response to climate change will depend critically on forest composition and structure. Glob Change Biol. doi:10.1111/gcb.12622.

    Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD. 2013. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–5.

    CAS  Article  Google Scholar 

  • Ellsworth DS. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ 22:461–72.

    Article  Google Scholar 

  • EMEP. 2010. EMEP Report 1/2010. Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe 2008. Norwegian Meteorological Institute, 181 pp.

  • Emmett BA, Boxman D, Bredemeier M, Gundersen P, Kjønaas O J, Moldan F, …, Wright RF. 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems 1:352–360

  • Evans RD, Koyama A, Sonderegger DL, Charlet TN, Newingham BA, Fenstermaker LF, Harlow B, Jin VL, Ogle K, Smith SD, Nowak RS. 2014. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nature Climate Change. doi:10.1038/nclimate2184; published online.

  • Farquhar GD, von Caemmerer SV, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    CAS  Article  PubMed  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K and others 2012. Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–58.

    Article  Google Scholar 

  • Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J. 2009. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–39.

    Article  Google Scholar 

  • Friend AD. 2010. Terrestrial plant production and climate change. J Exp Bot 61:1293–309.

    CAS  Article  PubMed  Google Scholar 

  • Gedalof ZE, Berg AA. 2010. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Global Biogeochemical Cycles 24: GB3027.

  • Gómez Aparicio L, García Valdés R, Ruiz Benito P, Zavala MA. 2011. Disentangling the relative importance of climate, size and competition on treegrowth in Iberian forests: implications for forest management under global change. Glob Change Biol 17:2400–14.

    Article  Google Scholar 

  • Gómez-Sanz VG, García-Viñas JI. 2011. Soil moisture spatio-temporal behavior of Pinus pinaster stands on sandy flatlands of central Spain. For Syst 20:293–302.

    Google Scholar 

  • Granda E, Rossatto DR, Camarero JJ, Voltas J, Valladares F. 2014. Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia 174:307–17.

    Article  PubMed  Google Scholar 

  • Hurvich CM, Tsai CL. 1989. Regression and time series model selection in small samples. Biometrika 76:297–307.

    Article  Google Scholar 

  • IPCC 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field V, Barros TF, Stocker D, Qin DJ, Dokken KL, Ebi MD, Mastrandrea KJ, Mach GK, Plattner SK, Allen M, Tignor PM, Eds. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. 582 pp.

  • Keenan T, Garcia R, Friend AD, Zaehle S, Gracia C, Sabate S. 2009. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences 6:2285–329.

    Article  Google Scholar 

  • Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S. 2011. Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters!. Glob Change Biol 17:565–79.

    Article  Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–7.

    CAS  Article  PubMed  Google Scholar 

  • Körner C, Morgan J, Norby R. 2007. CO2 fertilization: when, where, how much? In: Canadell JG, Pataki DE, Pitelka L. Terrestrial ecosystems in a changing world. Berlin: Springer, pp. 336.

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–63.

    Article  Google Scholar 

  • Koutavas A. 2013. CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece. Glob Change Biol 19:529–39.

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, and others 2005. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles 19:GB1015.

  • Lafont S, Zhao Y, Calvet JC, Peylin P, Ciais P, Maignan F, Weiss M. 2012. Modeling LAI, surface water and Carbon fluxes at high-resolution over France: Comparison of ISBA-A-gs and ORCHIDEE. Biogeosciences 9:439–56.

    CAS  Article  Google Scholar 

  • Leuzinger S, Koerner C. 2007. Water savings in mature deciduous forest trees under elevated CO2. Glob Change Biol 13:2498–508.

    Article  Google Scholar 

  • Linares JC, Camarero JJ. 2012. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Change Biol 18:1000–15.

    Article  Google Scholar 

  • Linares JC, Delgado-Huertas A, Camarero JJ, Merino J, Carreira JA. 2009. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161:611–24.

    Article  PubMed  Google Scholar 

  • Litton CM, Raich JW, Ryan MG. 2007. Carbon allocation in forest ecosystems. Glob Change Biol 13:2089–109.

    Article  Google Scholar 

  • Liu CF, Chen XL. 2004. Effect of resin tapping on Pinus elliottii forest growth and economic benefit. J Zhejiang Forestry Sci Technol 24:24–6.

    Google Scholar 

  • Louzada JLP, Fonseca FM. 2002. The heritability of wood density components in Pinus pinaster Ait. and the implications for tree breeding. Ann For Sci 59:867–73.

    Article  Google Scholar 

  • Madrigal-González J, Zavala MA. 2014. Competition and tree age modulated last century pine growth responses to high frequency of dry years in a water limited forest ecosystem. Agric For Meteorol 192–193:18–26.

    Article  Google Scholar 

  • Maignan F, Bréon FM, Chevallier F, Viovy N, Ciais P, Trules J, Mancip M. 2011. Evaluation of a global vegetation model using time series of satellite vegetation indices. Geosci Model Dev 4:1103–14.

    Article  Google Scholar 

  • McDowell NG. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Morales-Molino C, Postigo-Mijarra JM, Morla C, García-Antón M. 2012. Long-term persistence of mediterranean pine forests in the Duero Basin (central Spain) during the Holocene: the case of Pinus pinaster Aiton. Holocene 22:561–70.

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.

    Article  Google Scholar 

  • Niinemets Ü, Flexas J, Peñuelas J. 2011. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 26:136–42.

    Article  PubMed  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B and others 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–73.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME, …, Stock WD. 2011. Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environ Pollut 159:2265–2279.

  • Oechel WC, Hastings SJ, Vourlitis GL, Jenkins MA, Hinkson CL. 1995. Direct effects of CO2 in chaparral and mediterranean-type ecosystems. In: Moreno J, Oechel W, Eds. Global change and mediterranean-type ecosystems. ecological studies, vol. 117. New York, NY: Springer, pp. 58–75.

  • Olano JM, Linares JC, García-Cervigón AI, Arzac A, Delgado A, Rozas V. 2014. Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. Oecologia 176:273–83.

    Article  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J and others 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.

    CAS  Article  PubMed  Google Scholar 

  • Peñuelas J, Hunt JM, Ogaya R, Jump AS. 2008. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol 14:1076–88.

    Article  Google Scholar 

  • Peñuelas J, Canadell JG, Ogaya R. 2011. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608.

    Article  Google Scholar 

  • Phillips NG, Buckley TN, Tissue DT. 2008. Capacity of old trees to respond to environmental change. J Integr Plant Biol 50:1355–64.

    CAS  Article  PubMed  Google Scholar 

  • Picon-Cochard C, Guehl JM. 1999. Leaf gas exchange and carbohydrate concentrations in Pinus pinaster plants subjected to elevated CO2 and a soil drying cycle. Ann For Sci 56:71–6.

    Article  Google Scholar 

  • Picon-Couchard C, Guehl JM, Ferhi A. 1996. Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations. Plant Cell Environ 19:182–90.

    Article  Google Scholar 

  • Primicia I, Camarero JJ, Imbert JB, Castillo FJ. 2013. Effects of thinning and canopy type on growth dynamics of Pinus sylvestris: inter-annual variations and intra-annual interactions with microclimate. Eur J Forest Res 132:121–35.

    Article  Google Scholar 

  • Reich PB, Hobbie SE. 2013. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat Climate Change 3:278–82.

    CAS  Article  Google Scholar 

  • Reichstein M, Bahn M, Ciais P and others 2013. Climate extremes and the carbon cycle. Nature 500:287–95.

    CAS  Article  PubMed  Google Scholar 

  • Rodrigues-Corrêa KCDS, Lima JC, Fett-Neto AG. 2012. Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food Energy Security 1:81–93.

    Article  Google Scholar 

  • Ruiz-Benito P, Gómez-Aparicio L, Zavala MA. 2012. Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers Distrib 18:1092–106.

    Article  Google Scholar 

  • Ruiz-Benito P, Lines ER, Gómez-Aparicio L, Zavala MA, Coomes DA. 2013. Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS ONE 8:e56843.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Sabaté S, Gracia CA, Sánchez A. 2002. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manage 162:23–37.

    Article  Google Scholar 

  • Sánchez-Salguero R, Navarro RM, Camarero JJ, Fernández-Cancio Á. 2010. Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. For Syst 19:458–70.

    Google Scholar 

  • Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio Á. 2012. Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–85.

    Article  Google Scholar 

  • Saurer M, Siegwolf RT, Schweingruber FH. 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Change Biol 10:2109–20.

    Article  Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC. 2006. A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13116–20.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Sitch S, Smith B, Prentice IC and others 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–85.

    Article  Google Scholar 

  • Smith DM, Larson BC, Kelty MJ, Ashton PMS. 1997. The practice of silviculture: applied forest ecology. John Wiley and Sons, p. 357.

  • Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, …, Zavala MA. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93.

    CAS  Article  PubMed  Google Scholar 

  • Termiño J, García-Hidalgo JF, Segura M. 1997. Caracterización y evolución geológica del sistema dunas-humedales de Cantalejo (Segovia). Estud Geol 53:135–43.

    Google Scholar 

  • Vayreda J, Martinez-Vilalta J, Gracia M, Retana J. 2012. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Change Biol 18:1028–41.

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–718.

    Article  Google Scholar 

  • Wang GG, Chhin S, Bauerle WL. 2006. Effect of natural atmospheric CO2 fertilization suggested by open-grown white spruce in a dry environment. Glob Change Biol 12:601–10.

    Article  Google Scholar 

  • Westoby M. 1984. The self-thinning rule. Adv Ecol Res 14:167–226.

    Article  Google Scholar 

  • Wong SC. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. Oecologia 44:68–74.

    Article  Google Scholar 

  • Yue C, Ciais P, Luyssaert S and others 2013. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model. Biogeosciences 10:8233–52.

    Article  Google Scholar 

  • Zscheischler J, Mahecha MD, Harmeling S, Reichstein M. 2013. Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol Inform 15:66–73.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Maria Bragado and José Ignacio Quintanilla (Servicio Territorial de Medioambiente de Segovia, JCyL, Spain) for their great help with the data acquisition and their support with the historical archives. We also thank Dr. Paloma Ruiz-Benito and Dr. Asier Herrero for their useful comments on a previous version of the manuscript. This study was supported by CARBO-Extreme UE-project (FP 7 ENV-2008-1-226701) and VULPINECLIM project (MINECO, CGL-2013-44553-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Madrigal-González.

Additional information

Author contributions

Conceived of or designed study: JMG, SH, MAZ; Performed research: JMG, SH, MAZ; Analyzed data: JMG, SH; Contributed new methods or models: JMG, SH, BP, CY, PC; Wrote the paper: JMG, SH, CY, BP, PC, MAZ.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 458 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madrigal-González, J., Hantson, S., Yue, C. et al. Long-term Wood Production in Water-Limited Forests: Evaluating Potential CO2 Fertilization Along with Historical Confounding Factors. Ecosystems 18, 1043–1055 (2015). https://doi.org/10.1007/s10021-015-9882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9882-9

Key words

  • wood net primary production (W-NPP)
  • water-limited forest
  • drought
  • carbon fertilization
  • ORCHIDEE
  • historical management