Advertisement

Ecosystems

, Volume 18, Issue 6, pp 971–984 | Cite as

On Bird Functional Diversity: Species Richness and Functional Differentiation Show Contrasting Responses to Rainfall and Vegetation Structure in an Arid Landscape

  • Colleen L. Seymour
  • Robert E. Simmons
  • Grant S. Joseph
  • Jasper A. Slingsby
Article

Abstract

Biodiversity affects ecosystem function through species’ functional traits. Although it is possible to predict species richness (SR) patterns along environmental gradients, whether functional diversity (FD) changes in predictable ways is not known. In arid environments, SR typically increases with rainfall. Aridity may limit functional differentiation by allowing only certain traits, but could also be associated with diverse traits associated with various strategies for coping with spatial and temporal variation in resources. Rare species may have unique traits, making them particularly important to continued ecosystem function. We investigated SR, FD, and functional differentiation in bird assemblages along an aridity gradient, with attention to functional uniqueness of rare species. We surveyed bird communities in open savanna, bush-thickened, and riparian habitats at five sites of increasing aridity (~150–400 mm rainfall year−1) in wet and dry seasons for 3 years in Namibia. We calculated the standardized effect size of FD (sesFD) as a measure of functional differentiation and used mixed models to ascertain how SR, FD, and sesFD relate to rainfall, season, and habitat type. SR and FD increased with increasing rainfall. Conversely, sesFD declined with increasing rainfall and was lower in woody habitats, suggesting habitat filtering and greater niche overlap. Rare species were more functionally unique than common species, in all three habitats, so loss of rare species could degrade ecosystem function. Our results are consistent with a linear diversity–productivity relationship maintained by regular disturbance (drought) preventing strong competitors from excluding weaker competitors in higher productivity environments.

Keywords

aridity gradient bush encroachment bush thickening environmental gradients environmental filtering functional uniqueness null models rare species shrub encroachment standardized effect size 

Notes

Acknowledgments

Landowners and the Desert Research Foundation (Gobabeb) are thanked for site access and rainfall records; S. and L. Camp for accommodation; BIOTA Southern Africa, Namibian Nature Foundation and NRF (Grant 91039) for funding.

Supplementary material

10021_2015_9875_MOESM1_ESM.xlsx (59 kb)
Supplementary material 1 (XLSX 58 kb)
10021_2015_9875_MOESM2_ESM.docx (41 kb)
Supplementary material 2 (DOCX 41 kb)

References

  1. Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J. 2011. Cascading effects of bird functional extinction reduce pollination and plant density. Science 331:1068–71.CrossRefPubMedGoogle Scholar
  2. Bates D, Maechler M, Bolker B. 2013. lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-2. http://CRAN.R-project.org/package=lme4.
  3. Bailey S-A, Luck G, Moore LA, Carney KM, Anderson S, Betrus C, Fleishman E. 2004. Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes at multiple spatial scales. Ecography 27:207–17.CrossRefGoogle Scholar
  4. Belsky AJ, Matzke A, Uselman S. 1999. Survey of livestock influences on stream and riparian ecosystems in the western United States. J Soil Water Conserv 54:419–31.Google Scholar
  5. Bester FV. 1999. Major problem—bush species and densities in Namibia. Agricola 10:1–3.Google Scholar
  6. Bihn JH, Gebauer G, Brandl R. 2010. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782–92.CrossRefPubMedGoogle Scholar
  7. Blaum N, Rossmanith E, Jeltsch F. 2006. Land use affects rodent communities in Kalahari savannah rangelands. Afr J Ecol 45:189–95.CrossRefGoogle Scholar
  8. Boyer AG, Jetz W. 2014. Extinctions and the loss of ecological function in island bird communities. Glob Ecol Biogeogr 23:679–88.CrossRefGoogle Scholar
  9. Bracken MES, Low NHN. 2012. Realistic losses of rare species disproportionately impact higher trophic levels. Ecol Lett 15:461–7.CrossRefPubMedGoogle Scholar
  10. Brown JR, Archer S. 1989. Woody plant invasion of grasslands: establishment of honey mesquite (Prosopis glandulosa var. glandulosa) on sites differing in herbaceous biomass and grazing history. Oecologia 80:19–26.CrossRefPubMedGoogle Scholar
  11. Burgess ND, D’Amico Hales J, Underwood E, Dinerstein E, Olson DM, Itoua I, Schipper J, Ricketts TH, Newman K (eds). 2004. Terrestrial ecoregions of Africa and Madagascar: A conservation assessment. In: Island Press, Washington DCGoogle Scholar
  12. Burnham K, Anderson D. 2002. Model selection and multimodel inference. 2nd edn. New York: Springer.Google Scholar
  13. Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–87.CrossRefGoogle Scholar
  14. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67.CrossRefPubMedGoogle Scholar
  15. Chapin FS, Bret-Harte MS, Hobbie SE, Zhong H. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–58.CrossRefGoogle Scholar
  16. Colwell RK. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9 & earlier. User’s Guide and application. http://purl.oclc.org/estimates
  17. Cornwell WK, Schwilk DW, Ackerly David D. 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–71.CrossRefPubMedGoogle Scholar
  18. Culbert PD, Radeloff VC, Flather CH, Kellndorfer JM, Rittenhouse CD, Pidgeon AM. 2013. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. Auk 130:656–65.CrossRefGoogle Scholar
  19. Dai A. 2013. Increasing drought under global warming in observations and models. Nat Clim Change 3:52–8.CrossRefGoogle Scholar
  20. de Bello F, Sebastià M-T, Lepš J. 2006. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 6:801–10.CrossRefGoogle Scholar
  21. de Bello F. 2012. The quest for trait convergence and divergence in community assembly: are null-models the magic wand? Glob Ecol Biogeogr 21:312–17.CrossRefGoogle Scholar
  22. Dean WRJ, Barnard P, Anderson MD. 2009. When to stay, when to go: trade-offs for southern African arid-zone birds in times of drought. South Afr J Sci 105:24–8.Google Scholar
  23. Díaz S, Cabido M, Casanoves F. 1998. Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–22.CrossRefGoogle Scholar
  24. Díaz S, Cabido M. 2001. Vive la différence : plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–55.CrossRefGoogle Scholar
  25. Ehlers Smith YC, Ehlers Smith DA, Seymour CL, Thébault E, van Veen FJF. 2015. Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landsc Ecol. doi: 10.1007/s10980-015-0172-x.Google Scholar
  26. Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG. 2009. Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–47.CrossRefGoogle Scholar
  27. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33.CrossRefPubMedGoogle Scholar
  28. Gaston KJ, Blackburn TM, Klein Goldewijk K. 2003. Habitat conversion and global avian biodiversity loss. Proc R Soc B 270:1293–300.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Gaston KJ. 2000. Global patterns in biodiversity. Nature 405:220–7.CrossRefPubMedGoogle Scholar
  30. Gotelli NJ. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:2606–21.CrossRefGoogle Scholar
  31. Gotelli NJ, Colwell RK. 2011. Estimating species richness. In: Magurran AE, Gotelli NJ, McGill BJ, Eds. Frontiers in measuring biodiversity. New York: Oxford University Press. p 39–54.Google Scholar
  32. Gotelli NJ, Rohde K. 2002. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol Lett 5:86–94.CrossRefGoogle Scholar
  33. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–17.CrossRefGoogle Scholar
  34. Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC. 2014. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14.CrossRefGoogle Scholar
  35. Hockey PAR, Dean WRJ, Ryan PG. 2005. Roberts birds of Southern Africa. 7th edn. Cape Town: The Trustees of the John Voelcker Bird Book Fund.Google Scholar
  36. Işik K. 2011. Rare and endemic species: why are they prone to extinction ? Turk J Bot 35:411–17.Google Scholar
  37. Jain M, Flynn DF, Prager CM, Hart GM, Devan CM, Ahrestani FS, Palmer MI, Bunker DE, Knops JM, Jouseau CF, Naeem S. 2014. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol Evol 4:104–12.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Joseph GS, Seymour CL, Cumming GS, Cumming DHM, Mahlangu Z. 2014. Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems 17:808–19.CrossRefGoogle Scholar
  39. Kondoh M. 2001. Unifying the relationships of species richness to productivity and disturbance. Proc R Soc B 268:269–71.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Kraft NJB, Ackerly DD. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Functional tests of trait and community assembly phylogenetic across scales in an Amazonian forest spatial. Ecol Monogr 80:401–22.CrossRefGoogle Scholar
  41. Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.CrossRefPubMedGoogle Scholar
  42. Luck GW, Carter A, Smallbone L. 2013. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity. PloS one 8:e63671.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Lyons KG, Brigham CA, Traut BH, Schwartz MW. 2005. Rare species and ecosystem functioning. Conserv Biol 19:1019–24.CrossRefGoogle Scholar
  44. Lyons KG, Schwartz MW. 2001. Rare species loss alters ecosystem function - invasion resistance. Ecol Lett 4:358–65.CrossRefGoogle Scholar
  45. MacArthur R, Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–85.CrossRefGoogle Scholar
  46. MacDougall AS, McCann KS, Gellner G, Turkington R. 2013. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494:86–9.CrossRefPubMedGoogle Scholar
  47. Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS, Cornell SE, Díaz S, Jennings S, Leadley P, Mumby PJ, Purvis A, Scholes RJ, Seddon AWR, Solan M, Steffen W, Woodward G. 2014. Approaches to defining a planetary boundary for biodiversity. Global Environmental Change 28:289–97.CrossRefGoogle Scholar
  48. Meik JM, Jeo RM, Mendelson JR, Jenks KE. 2002. Effects of bush encroachment on an assemblage of diurnal lizard species in central Namibia. Biol Conserv 106:29–36.CrossRefGoogle Scholar
  49. Mendez V, Gill JA, Burton NHK, Austin GE, Petchey OL, Davies RG. 2012. Functional diversity across space and time: trends in wader communities on British estuaries. Diversity and Distributions 18:356–65.CrossRefGoogle Scholar
  50. Millenium Ecosystem Assessment. 2005. Ecosystems and human well-being: desertification synthesis. Washington DC: Millenium Ecosystem Assessment.Google Scholar
  51. Mouchet MA, Villéger S, Mason NWH, Mouillot D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867–76.CrossRefGoogle Scholar
  52. Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W. 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Murphy BP, Lehmann CER, Russell-Smith J, Lawes MJ. 2014. Fire regimes and woody biomass dynamics in Australian savannas. J Biogeogr 41:133–44.CrossRefGoogle Scholar
  54. Naeem S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–52.CrossRefGoogle Scholar
  55. Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.CrossRefGoogle Scholar
  56. Niu K, Choler P, de Bello F, Mirotchnick N, Du G, Sun S. 2014. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agric Ecosyst Environ 182:106–12.CrossRefGoogle Scholar
  57. O’Connor TG, Puttick JR, Hoffman MT. 2014. Bush encroachment in southern Africa: changes and causes. Afr J Range Forage Sci 31:67–88.CrossRefGoogle Scholar
  58. Pavoine S, Ollier S, Dufour A-B. 2005. Is the originality of a species measurable? Ecol Lett 8:579–86.CrossRefGoogle Scholar
  59. Petchey OL, Evans KL, Fishburn IS, Gaston KJ. 2007. Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–85.CrossRefPubMedGoogle Scholar
  60. Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–11.CrossRefGoogle Scholar
  61. Petchey OL, Gaston KJ. 2006. Functional diversity: back to basics and looking forward. Ecol Lett 9:741–58.CrossRefPubMedGoogle Scholar
  62. Petchey OL, Hector A, Gaston KJ. 2004. How do different measures of functional diversity perform? Ecology 85:847–57.CrossRefGoogle Scholar
  63. Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR. 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proc Natl Acad Sci USA 103:10941–6.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Podani J, Schmera D. 2006. On dendrogram-based measures of functional diversity. Oikos 115:179–85.CrossRefGoogle Scholar
  65. Podani J. 1999. Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48:331–40.CrossRefGoogle Scholar
  66. Schwartz MW, Brigham CA, Hoeksema JD, Lyons KG, Mills MH, van Mantgem PJ. 2000. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122:297–305.CrossRefGoogle Scholar
  67. Sekercioglu CH. 2006. Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–71.CrossRefPubMedGoogle Scholar
  68. Seymour CL, Dean WRJ. 2010. The influence of changes in habitat structure on the species composition of bird assemblages in the southern Kalahari. Aust Ecol 35:581–92.CrossRefGoogle Scholar
  69. Seymour CL, Milton SJ, Joseph GS, Dean WRJ, Ditlhobolo T, Cumming GS. 2010. Twenty years of rest returns grazing potential, but not palatable plant diversity, to Karoo rangeland, South Africa. J Appl Ecol 47:859–67.CrossRefGoogle Scholar
  70. Seymour CL, Simmons RE. 2008. Can severely fragmented patches of riparian vegetation still be important for arid-land bird diversity? J Arid Environ 72:2275–81.CrossRefGoogle Scholar
  71. Sherwood S, Fu Q. 2014. A drier future? Science 343:737–9.CrossRefPubMedGoogle Scholar
  72. Stevens RD, Cox SB, Strauss RE, Willig MR. 2003. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett 6:1099–108.CrossRefGoogle Scholar
  73. Stubbs WJ, Wilson JB. 2004. Evidence for limiting similarity in a sand dune community. J Ecol 92:557–67.CrossRefGoogle Scholar
  74. Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21.CrossRefGoogle Scholar
  75. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92.CrossRefGoogle Scholar
  76. Theodose TA, Jaeger CH, Bowman WD, Schardt JC. 1996. Uptake and allocation of 15 N in alpine plants: implications for the importance of competitive ability in predicting community structure in a stressful environment. Oikos 75:59–66.CrossRefGoogle Scholar
  77. Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ. 2010. Little evidence for limiting similarity in a long-term study of a roadside plant community. J Ecol 98:480–7.CrossRefGoogle Scholar
  78. Tilman D. 2001. Functional Diversity. In: Levin SA, Ed. Encyclopedia of biodiversity, Vol. 3. San Diego, CA: Academic Press. p 109–21.CrossRefGoogle Scholar
  79. Trisos CH, Petchey OL, Tobias JA. 2015. Unraveling the interplay of community assembly processes acting on multiple niche axes across spatial scales. Am Nat 184:593–608.CrossRefGoogle Scholar
  80. Valone TJ, Meyer M, Brown JH, Chew RM. 2002. Timescale of perennial grass recovery in desertified arid grasslands following livestock removal. Conserv Biol 16:995–1002.CrossRefGoogle Scholar
  81. Weiher E, Clarke GDP, Keddy PA. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81:309–22.CrossRefGoogle Scholar
  82. Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.CrossRefGoogle Scholar
  83. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Colleen L. Seymour
    • 1
    • 2
  • Robert E. Simmons
    • 2
  • Grant S. Joseph
    • 2
  • Jasper A. Slingsby
    • 3
    • 4
  1. 1.Kirstenbosch Research CentreSouth African National Biodiversity InstituteClaremontSouth Africa
  2. 2.DST-NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Department of Biological SciencesUniversity of Cape TownRondeboschSouth Africa
  3. 3.South African Environmental Observation Network (SAEON), Fynbos NodeNewlandsSouth Africa
  4. 4.Department of Biological Sciences, Centre for Statistics in Ecology, Environment and ConservationUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations