Nitrogen Uptake in an Alpine Kobresia Pasture on the Tibetan Plateau: Localization by 15N Labeling and Implications for a Vulnerable Ecosystem

Abstract

Grasslands are very important regionally and globally because they store large amounts of carbon (C) and nitrogen (N) and provide food for grazing animals. Intensive degradation of alpine grasslands in recent decades has mainly impacted the upper root-mat/soil horizon, with severe consequences for nutrient uptake in these nutrient-limited ecosystems. We used 15N labeling to identify the role of individual soil layers for N-uptake by Kobresia pygmaea—the dominating plant in the degraded Tibetan pasture ecosystems. We hypothesized a very efficient N-uptake corresponding mainly to the vertical distribution of living roots (topsoil > subsoil). We assume that K. pygmaea develops a very dense root-mat, which has to be maintained by small aboveground biomass, to enable this efficient N-uptake. Consequently, a higher N-investment into roots compared to shoots was hypothesized. The 15N recovery in whole plants (~70%) indicated very efficient N-uptake from the upper injection depths (0–5 cm). The highest 15N amounts were recovered in root biomass, whereby 15N recovery in roots strongly decreased with depth. In contrast, 15N recovery in shoots was generally low (~18%) and independent of the 15N injection depth. This clearly shows that the low N demand of Kobresia shoots can be easily covered by N-uptake from any depth. Less living root biomass in lower versus upper soil was compensated by a higher specific activity of roots for N-uptake. The 15N allocation into roots was on average 1.7 times higher than that into shoots, which agreed well with the very high R/S ratio. Increasing root biomass is an efficient strategy of K. pygmaea to compete for belowground resources at depths and periods with available resources. This implies high C-costs to maintain root biomass (~6.0 kg DM m−2), which must be covered by a very low amount of photosynthetically active shoots (0.3 kg DM m−2). It also suggests that Kobresia grasslands react extremely sensitively toward changes in climate and management that disrupt this above-/belowground trade-off mechanism.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1–11.

    Article  Google Scholar 

  2. Babel W, Biermann T, Coners H, Falge E, Seeber E, Ingrisch J, Schleuss PM, Gerken T, Leonbacher J, Leipold T, Willinghöfer S, Schützenmeister K, Shibistova O, Becker L, Hafner S, Spielvogel S, Li X, Xu X, Sun Y, Zhang L, Yang Y, Ma Y, Wesche K, Graf H, Leuschner C, Guggenberger G, Kuzyakov Y, Miehe G, Foken T. 2014. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 11:6633–56.

    Article  Google Scholar 

  3. Bassirirad H. 2000. Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–69.

    CAS  Article  Google Scholar 

  4. Boos WR, Kuang Z. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–22.

    CAS  Article  PubMed  Google Scholar 

  5. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ. 2002. Positive interactions among alpine plants increase with stress. Nature 417:844–8.

    CAS  Article  PubMed  Google Scholar 

  6. Cao G, Tang Y, Mo W, Wang Y, Li Y, Zhao X. 2004. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–43.

    CAS  Article  Google Scholar 

  7. Chapin FS III, Matson PA, Vitousek PM, Eds. 2011. Principles of terrestial ecosystem ecology. New York: Springer.

    Google Scholar 

  8. Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol 19:2940–55.

    Article  Google Scholar 

  9. Choler P. 2005. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arctic Antartic Alpine Res 37:444–53.

    Article  Google Scholar 

  10. Davidson RL. 1969. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 33:561–9.

    Google Scholar 

  11. Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Change Biol 19:459–72.

    Article  Google Scholar 

  12. Du M. 2004. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob Planet Change 41:241–9.

    Article  Google Scholar 

  13. Gao Q, Li Y, Xu H, Wan Y, Jiangcun W. 2014. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitig Adapt Strateg Glob Change 19:199–209.

    Article  Google Scholar 

  14. Gao Y, Luo P, Wu N, Yi S, Chen H. 2007. Biomass and nitrogen responses to grazing intensity in an alpine meadow on the eastern Tibetan Plateau. Pol J Ecol 55:469–79.

    CAS  Google Scholar 

  15. Gao YH, Luo P, Wu N, Chen H, Wang GX. 2008. Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an alpine meadow on the eastern Tibetan Plateau. Appl Ecol Environ Res 6:69–79.

    Article  Google Scholar 

  16. Genxu W, Ju Q, Guodong C, Yuanmin L. 2002. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ 291:207–17.

    Article  PubMed  Google Scholar 

  17. Harris R. 2010. Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12.

    CAS  Article  Google Scholar 

  18. Heitkamp F, Jacobs A, Jungkunst HF, Heinze S, Wendland M, Kuzyakov Y. 2012. Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, Eds. Recarbonization of the biosphere. Dordrecht: Springer. p. 395–428

  19. Heitkamp F, Sylvester SP, Kessler M, Sylvester MDPV, Jungkunst HF. 2014. Inaccessible Andean sites reveal human-induced weathering in grazed soils. Prog Phys Geogr 38:576–601.

    Article  Google Scholar 

  20. Hermans C, Hammond JP, White PJ, Verbruggen N. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–17.

    CAS  Article  PubMed  Google Scholar 

  21. Hertel D, Leuschner C. 2002. A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus mixed forest. Plant Soil 239:237–51.

    CAS  Article  Google Scholar 

  22. Hobbie EA, Quimette AP. 2009. Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95:355–71.

    CAS  Article  Google Scholar 

  23. Holzner W, Kriechbaum M. 2001. Pastures in South and Central Tibet. II. Probable causes of pasture degradation. Die Bodenkultur 52:37–44.

    Google Scholar 

  24. Ingrisch J, Biermann T, Seeber E, Leipold T, Li M, Ma Y, Xu X, Miehe G, Guggenberger G, Foken T, Kuzyakov Y. 2015. Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci Total Environ 505:1213–24.

    CAS  Article  PubMed  Google Scholar 

  25. IUSS Working Group 2006. World Reference Base for Soil Resources. FAO, World Soil Resources Reports 103, Rome. p. 128.

  26. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.

    Article  Google Scholar 

  27. Kaiser K, Miehe G, Barthelmes A, Ehrmann O, Scharf A, Schult M, Schluetz F, Adamczyk S, Frenzel B. 2008. Turf-bearing topsoils on the central Tibetan Plateau, China: pedology, botany, geochronology. Catena 73:300–11.

    Article  Google Scholar 

  28. Klein JA, Harte J, Zhao X. 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–9.

    Article  Google Scholar 

  29. Knapp AK, Smith M. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–4.

    CAS  Article  PubMed  Google Scholar 

  30. Körner C, Ed. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin: Springer.

    Google Scholar 

  31. Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–69.

    CAS  Article  PubMed  Google Scholar 

  32. LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  33. Li X, Zhang X, Wu J, Shen Z, Zhang Y, Xu X, Fan Y, Zhao Y, Yan W. 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ Earth Sci 64:1911–19.

    Article  Google Scholar 

  34. Li Y, Luo T, Lu Q. 2008. Plant height as a simple predictor of the root to shoot ratio: evidence from alpine grasslands on the Tibetan Plateau. J Veg Sci 19:245–52.

    Article  Google Scholar 

  35. Lipson DA, Schmidt SK, Monson RK. 1999. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–31.

    Article  Google Scholar 

  36. Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D. 2012. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ Res Lett 7:1–12.

    Google Scholar 

  37. Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F. 2011. Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–64.

    CAS  Article  PubMed  Google Scholar 

  38. Liu Y, Xu R, Xu X, Wei D, Wang Y, Wang Y. 2013. Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant Soil 373:515–29.

    CAS  Article  Google Scholar 

  39. Lü C, Tian H. 2007. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J Geophys Res 112:1–10.

    Google Scholar 

  40. Luo T, Brown S, Pan Y, Shi P, Ouyang H, Yu Z, Zhu H. 2005. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For Ecol Manage 206:349–63.

    Article  Google Scholar 

  41. Miehe G, Miehe S, Bach K, Nölling J, Hanspach J, Reudenbach C, Kaiser K, Wesche K, Mosbrugger V, Yang Y, Ma Y. 2011. Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone. J Arid Environ 75:711–23.

    Article  Google Scholar 

  42. Miehe G, Miehe S, Boehner J, Kaiser K, Hensen I, Madsen D, Liu J, Opgenoorth L. 2014. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quatern Sci Rev 86:190–209.

    Article  Google Scholar 

  43. Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo La, Schluetz F. 2009. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Paleogeogr Paleoclimatology Paleoecol 276:130–47.

    Article  Google Scholar 

  44. Miehe G, Miehe S, Kaiser K, Jianquan Liu, Zhao X. 2008. Status and dynamics of Kobresia pygmaea ecosystem on the Tibetan plateau. Ambio 37:272–9.

    Article  PubMed  Google Scholar 

  45. Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.

    Article  Google Scholar 

  46. Onipchenko VG, Makarov MI, van Logtestijn RSP, Ivanov VB, Akhmetzhanova AA, Tekeev DK, Ermak AA, Salpagarova FS, Kozhevnikova AD, Cornelissen JHC. 2009. New nitrogen uptake strategy: specialized snow roots. Ecol Lett 12:758–64.

    Article  PubMed  Google Scholar 

  47. Rhode D, Madsen DB, Brantingham PJ, Dargye T. 2007. Yaks, yak dung, and prehistoric human habitation of the Tibetan Plateau. Dev Quat Sci 9:205–24.

    Google Scholar 

  48. Robinson D. 2001. δ 15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–62.

    Article  PubMed  Google Scholar 

  49. Song M, Xu X, Hu Q, Tian Y, Ouyang H, Zhou C. 2007. Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant Soil 297:127–37.

    CAS  Article  Google Scholar 

  50. Stumpp M, Wesche K, Retzer V, Miehe G. 2005. Impact of grazing livestock and distance from water source on soil fertility in Southern Mongolia. Mt Res Dev 25:244–51.

    Article  Google Scholar 

  51. Swift MJ, Heal OW, Anderson JM, Eds. 1979. Decomposition in terrestial ecosystems. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  52. Sylvester SP, Sylvester MDPV, Kessler M. 2014. Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci 25:1225–34.

    Article  Google Scholar 

  53. van Reeuwijk LP. 2002. Procedures for soil analysis. Technical Paper 9. (6th edition), International Soil Reference and Information Centre (ISRIC), Food and Agriculture Organization of the United Nations (FAO), Wageningen, The Netherlands, 120 pp.

  54. Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea—how can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  55. Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15.

    Article  PubMed  Google Scholar 

  56. Wang C, Cao G, Wang Q, Jing Z, Ding L, Long R. 2008. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. China Life Sci 51:86–94.

    CAS  Article  Google Scholar 

  57. Wang L, Niu K, Yang Y, Zhou P. 2010. Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations. China Life Sci 53:851–7.

    Article  Google Scholar 

  58. Wang WY, Wang QJ, Wang CY, Shi HL, Li Y, Wang G. 2005. The effect of land management on carbon and nitrogen status in plants and soils of alpine meadows on the Tibetan Plateau. Land Degrad Dev 16:405–15.

    Article  Google Scholar 

  59. Wesche K, Ronnenberg K. 2010. Effects of NPK fertilisation in arid southern Mongolian desert steppes. Plant Ecol 207:93–105.

    Article  Google Scholar 

  60. Wilson JB. 1988. A review of evidence on the control of shoot:root ratio, in the relation to models. Ann Bot 61:433–49.

    Google Scholar 

  61. Wu Y, Wu J, Deng Y, Tan H, Du Y, Gu S, Tang Y, Cui X. 2011. Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau. Plant Soil 338:497–510.

    CAS  Article  Google Scholar 

  62. Xu X, Ouyang H, Kuzyakov Y, Richter A, Wanek W. 2006. Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285:221–31.

    CAS  Article  Google Scholar 

  63. Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y. 2011. Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. J Ecol 99:563–71.

    CAS  Google Scholar 

  64. Xu X, Wanek W, Zhou C, Richter A, Song M, Cao G, Ouyang H, Kuzyakov Y. 2014. Nutrient limitation of alpine plants: implications from leaf N: P stoichiometry and δ15 N. P stoichiometry and leaf δ 15 N. J Plant Nutr Soil Sci 177:378–87.

    CAS  Article  Google Scholar 

  65. Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B. 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14:1592–9.

    Article  Google Scholar 

  66. Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J. 2013. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Change Biol 19:637–48.

    Article  Google Scholar 

  67. Yang Y, Fang J, Ji C, Han W. 2009. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci 20:177–84.

    Article  Google Scholar 

  68. Yuan Z, Li L, Han X, Chen S, Wang Z, Chen Q, Bai W. 2006. Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia 148:564–72.

    Article  PubMed  Google Scholar 

  69. Zhang S, Chen D, Sun D, Wang X, Smith JL, Du G. 2012. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China. Biol Fertil Soils 48:393–400.

    CAS  Article  Google Scholar 

  70. Zhou L, Song M, Wang S, Fan J, Liu J, Zhong H, Yu G, Gao L, Hu Z, Chen B, Wu W, Song T. 2014. Patterns of soil 15N and total N and their relationship with environmental factors on the Qinghai-Tibetan Plateau. Pedosphere 24:232–42.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the KEMA research team and in particular T. Biermann, H. Coners, J. Leonbacher, E. Seeber, K. Schützenmeister, L. Steingräber, and S. Willinghöfer for helpful support before and during fieldwork and for providing important data on climate and vegetation cover. Furthermore, we are grateful for the support of our Chinese colleagues from the Institute of Tibetan Plateau Research (ITP). We acknowledge support from the German Research Foundation (DFG) within the Priority Programme 1372. The KEMA research station was founded by the Volkswagen Foundation in cooperation with the University of Marburg and the University of Lhasa. We are also grateful to the Centre for Stable Isotope Research and Analysis (KOSI) of Göttingen for 15N isotope analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Per-Marten Schleuss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schleuss, P., Heitkamp, F., Sun, Y. et al. Nitrogen Uptake in an Alpine Kobresia Pasture on the Tibetan Plateau: Localization by 15N Labeling and Implications for a Vulnerable Ecosystem. Ecosystems 18, 946–957 (2015). https://doi.org/10.1007/s10021-015-9874-9

Download citation

Keywords

  • Kobresia pygmaea
  • root activity
  • root biomass
  • plant strategy
  • above-belowground trade-offs
  • 15N partitioning
  • pasture degradation