Advertisement

Ecosystems

, Volume 18, Issue 6, pp 946–957 | Cite as

Nitrogen Uptake in an Alpine Kobresia Pasture on the Tibetan Plateau: Localization by 15N Labeling and Implications for a Vulnerable Ecosystem

  • Per-Marten SchleussEmail author
  • Felix Heitkamp
  • Yue Sun
  • Georg Miehe
  • Xingliang Xu
  • Yakov Kuzyakov
Article

Abstract

Grasslands are very important regionally and globally because they store large amounts of carbon (C) and nitrogen (N) and provide food for grazing animals. Intensive degradation of alpine grasslands in recent decades has mainly impacted the upper root-mat/soil horizon, with severe consequences for nutrient uptake in these nutrient-limited ecosystems. We used 15N labeling to identify the role of individual soil layers for N-uptake by Kobresia pygmaea—the dominating plant in the degraded Tibetan pasture ecosystems. We hypothesized a very efficient N-uptake corresponding mainly to the vertical distribution of living roots (topsoil > subsoil). We assume that K. pygmaea develops a very dense root-mat, which has to be maintained by small aboveground biomass, to enable this efficient N-uptake. Consequently, a higher N-investment into roots compared to shoots was hypothesized. The 15N recovery in whole plants (~70%) indicated very efficient N-uptake from the upper injection depths (0–5 cm). The highest 15N amounts were recovered in root biomass, whereby 15N recovery in roots strongly decreased with depth. In contrast, 15N recovery in shoots was generally low (~18%) and independent of the 15N injection depth. This clearly shows that the low N demand of Kobresia shoots can be easily covered by N-uptake from any depth. Less living root biomass in lower versus upper soil was compensated by a higher specific activity of roots for N-uptake. The 15N allocation into roots was on average 1.7 times higher than that into shoots, which agreed well with the very high R/S ratio. Increasing root biomass is an efficient strategy of K. pygmaea to compete for belowground resources at depths and periods with available resources. This implies high C-costs to maintain root biomass (~6.0 kg DM m−2), which must be covered by a very low amount of photosynthetically active shoots (0.3 kg DM m−2). It also suggests that Kobresia grasslands react extremely sensitively toward changes in climate and management that disrupt this above-/belowground trade-off mechanism.

Keywords

Kobresia pygmaea root activity root biomass plant strategy above-belowground trade-offs 15N partitioning pasture degradation 

Notes

Acknowledgments

We thank the KEMA research team and in particular T. Biermann, H. Coners, J. Leonbacher, E. Seeber, K. Schützenmeister, L. Steingräber, and S. Willinghöfer for helpful support before and during fieldwork and for providing important data on climate and vegetation cover. Furthermore, we are grateful for the support of our Chinese colleagues from the Institute of Tibetan Plateau Research (ITP). We acknowledge support from the German Research Foundation (DFG) within the Priority Programme 1372. The KEMA research station was founded by the Volkswagen Foundation in cooperation with the University of Marburg and the University of Lhasa. We are also grateful to the Centre for Stable Isotope Research and Analysis (KOSI) of Göttingen for 15N isotope analysis.

Supplementary material

10021_2015_9874_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1–11.CrossRefGoogle Scholar
  2. Babel W, Biermann T, Coners H, Falge E, Seeber E, Ingrisch J, Schleuss PM, Gerken T, Leonbacher J, Leipold T, Willinghöfer S, Schützenmeister K, Shibistova O, Becker L, Hafner S, Spielvogel S, Li X, Xu X, Sun Y, Zhang L, Yang Y, Ma Y, Wesche K, Graf H, Leuschner C, Guggenberger G, Kuzyakov Y, Miehe G, Foken T. 2014. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 11:6633–56.CrossRefGoogle Scholar
  3. Bassirirad H. 2000. Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–69.CrossRefGoogle Scholar
  4. Boos WR, Kuang Z. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–22.CrossRefPubMedGoogle Scholar
  5. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ. 2002. Positive interactions among alpine plants increase with stress. Nature 417:844–8.CrossRefPubMedGoogle Scholar
  6. Cao G, Tang Y, Mo W, Wang Y, Li Y, Zhao X. 2004. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–43.CrossRefGoogle Scholar
  7. Chapin FS III, Matson PA, Vitousek PM, Eds. 2011. Principles of terrestial ecosystem ecology. New York: Springer.Google Scholar
  8. Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol 19:2940–55.CrossRefGoogle Scholar
  9. Choler P. 2005. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arctic Antartic Alpine Res 37:444–53.CrossRefGoogle Scholar
  10. Davidson RL. 1969. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 33:561–9.Google Scholar
  11. Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Change Biol 19:459–72.CrossRefGoogle Scholar
  12. Du M. 2004. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob Planet Change 41:241–9.CrossRefGoogle Scholar
  13. Gao Q, Li Y, Xu H, Wan Y, Jiangcun W. 2014. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitig Adapt Strateg Glob Change 19:199–209.CrossRefGoogle Scholar
  14. Gao Y, Luo P, Wu N, Yi S, Chen H. 2007. Biomass and nitrogen responses to grazing intensity in an alpine meadow on the eastern Tibetan Plateau. Pol J Ecol 55:469–79.Google Scholar
  15. Gao YH, Luo P, Wu N, Chen H, Wang GX. 2008. Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an alpine meadow on the eastern Tibetan Plateau. Appl Ecol Environ Res 6:69–79.CrossRefGoogle Scholar
  16. Genxu W, Ju Q, Guodong C, Yuanmin L. 2002. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ 291:207–17.CrossRefPubMedGoogle Scholar
  17. Harris R. 2010. Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12.CrossRefGoogle Scholar
  18. Heitkamp F, Jacobs A, Jungkunst HF, Heinze S, Wendland M, Kuzyakov Y. 2012. Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, Eds. Recarbonization of the biosphere. Dordrecht: Springer. p. 395–428Google Scholar
  19. Heitkamp F, Sylvester SP, Kessler M, Sylvester MDPV, Jungkunst HF. 2014. Inaccessible Andean sites reveal human-induced weathering in grazed soils. Prog Phys Geogr 38:576–601.CrossRefGoogle Scholar
  20. Hermans C, Hammond JP, White PJ, Verbruggen N. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–17.CrossRefPubMedGoogle Scholar
  21. Hertel D, Leuschner C. 2002. A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus mixed forest. Plant Soil 239:237–51.CrossRefGoogle Scholar
  22. Hobbie EA, Quimette AP. 2009. Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95:355–71.CrossRefGoogle Scholar
  23. Holzner W, Kriechbaum M. 2001. Pastures in South and Central Tibet. II. Probable causes of pasture degradation. Die Bodenkultur 52:37–44.Google Scholar
  24. Ingrisch J, Biermann T, Seeber E, Leipold T, Li M, Ma Y, Xu X, Miehe G, Guggenberger G, Foken T, Kuzyakov Y. 2015. Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci Total Environ 505:1213–24.CrossRefPubMedGoogle Scholar
  25. IUSS Working Group 2006. World Reference Base for Soil Resources. FAO, World Soil Resources Reports 103, Rome. p. 128.Google Scholar
  26. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.CrossRefGoogle Scholar
  27. Kaiser K, Miehe G, Barthelmes A, Ehrmann O, Scharf A, Schult M, Schluetz F, Adamczyk S, Frenzel B. 2008. Turf-bearing topsoils on the central Tibetan Plateau, China: pedology, botany, geochronology. Catena 73:300–11.CrossRefGoogle Scholar
  28. Klein JA, Harte J, Zhao X. 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–9.CrossRefGoogle Scholar
  29. Knapp AK, Smith M. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–4.CrossRefPubMedGoogle Scholar
  30. Körner C, Ed. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin: Springer.Google Scholar
  31. Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–69.CrossRefPubMedGoogle Scholar
  32. LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.CrossRefPubMedGoogle Scholar
  33. Li X, Zhang X, Wu J, Shen Z, Zhang Y, Xu X, Fan Y, Zhao Y, Yan W. 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ Earth Sci 64:1911–19.CrossRefGoogle Scholar
  34. Li Y, Luo T, Lu Q. 2008. Plant height as a simple predictor of the root to shoot ratio: evidence from alpine grasslands on the Tibetan Plateau. J Veg Sci 19:245–52.CrossRefGoogle Scholar
  35. Lipson DA, Schmidt SK, Monson RK. 1999. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–31.CrossRefGoogle Scholar
  36. Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D. 2012. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ Res Lett 7:1–12.Google Scholar
  37. Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F. 2011. Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–64.CrossRefPubMedGoogle Scholar
  38. Liu Y, Xu R, Xu X, Wei D, Wang Y, Wang Y. 2013. Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant Soil 373:515–29.CrossRefGoogle Scholar
  39. Lü C, Tian H. 2007. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J Geophys Res 112:1–10.Google Scholar
  40. Luo T, Brown S, Pan Y, Shi P, Ouyang H, Yu Z, Zhu H. 2005. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For Ecol Manage 206:349–63.CrossRefGoogle Scholar
  41. Miehe G, Miehe S, Bach K, Nölling J, Hanspach J, Reudenbach C, Kaiser K, Wesche K, Mosbrugger V, Yang Y, Ma Y. 2011. Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone. J Arid Environ 75:711–23.CrossRefGoogle Scholar
  42. Miehe G, Miehe S, Boehner J, Kaiser K, Hensen I, Madsen D, Liu J, Opgenoorth L. 2014. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quatern Sci Rev 86:190–209.CrossRefGoogle Scholar
  43. Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo La, Schluetz F. 2009. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Paleogeogr Paleoclimatology Paleoecol 276:130–47.CrossRefGoogle Scholar
  44. Miehe G, Miehe S, Kaiser K, Jianquan Liu, Zhao X. 2008. Status and dynamics of Kobresia pygmaea ecosystem on the Tibetan plateau. Ambio 37:272–9.CrossRefPubMedGoogle Scholar
  45. Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.CrossRefGoogle Scholar
  46. Onipchenko VG, Makarov MI, van Logtestijn RSP, Ivanov VB, Akhmetzhanova AA, Tekeev DK, Ermak AA, Salpagarova FS, Kozhevnikova AD, Cornelissen JHC. 2009. New nitrogen uptake strategy: specialized snow roots. Ecol Lett 12:758–64.CrossRefPubMedGoogle Scholar
  47. Rhode D, Madsen DB, Brantingham PJ, Dargye T. 2007. Yaks, yak dung, and prehistoric human habitation of the Tibetan Plateau. Dev Quat Sci 9:205–24.Google Scholar
  48. Robinson D. 2001. δ 15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–62.CrossRefPubMedGoogle Scholar
  49. Song M, Xu X, Hu Q, Tian Y, Ouyang H, Zhou C. 2007. Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant Soil 297:127–37.CrossRefGoogle Scholar
  50. Stumpp M, Wesche K, Retzer V, Miehe G. 2005. Impact of grazing livestock and distance from water source on soil fertility in Southern Mongolia. Mt Res Dev 25:244–51.CrossRefGoogle Scholar
  51. Swift MJ, Heal OW, Anderson JM, Eds. 1979. Decomposition in terrestial ecosystems. Oxford: Blackwell Scientific Publications.Google Scholar
  52. Sylvester SP, Sylvester MDPV, Kessler M. 2014. Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci 25:1225–34.CrossRefGoogle Scholar
  53. van Reeuwijk LP. 2002. Procedures for soil analysis. Technical Paper 9. (6th edition), International Soil Reference and Information Centre (ISRIC), Food and Agriculture Organization of the United Nations (FAO), Wageningen, The Netherlands, 120 pp.Google Scholar
  54. Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea—how can it occur? Biogeochemistry 13:87–115.CrossRefGoogle Scholar
  55. Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15.CrossRefPubMedGoogle Scholar
  56. Wang C, Cao G, Wang Q, Jing Z, Ding L, Long R. 2008. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. China Life Sci 51:86–94.CrossRefGoogle Scholar
  57. Wang L, Niu K, Yang Y, Zhou P. 2010. Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations. China Life Sci 53:851–7.CrossRefGoogle Scholar
  58. Wang WY, Wang QJ, Wang CY, Shi HL, Li Y, Wang G. 2005. The effect of land management on carbon and nitrogen status in plants and soils of alpine meadows on the Tibetan Plateau. Land Degrad Dev 16:405–15.CrossRefGoogle Scholar
  59. Wesche K, Ronnenberg K. 2010. Effects of NPK fertilisation in arid southern Mongolian desert steppes. Plant Ecol 207:93–105.CrossRefGoogle Scholar
  60. Wilson JB. 1988. A review of evidence on the control of shoot:root ratio, in the relation to models. Ann Bot 61:433–49.Google Scholar
  61. Wu Y, Wu J, Deng Y, Tan H, Du Y, Gu S, Tang Y, Cui X. 2011. Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau. Plant Soil 338:497–510.CrossRefGoogle Scholar
  62. Xu X, Ouyang H, Kuzyakov Y, Richter A, Wanek W. 2006. Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285:221–31.CrossRefGoogle Scholar
  63. Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y. 2011. Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. J Ecol 99:563–71.Google Scholar
  64. Xu X, Wanek W, Zhou C, Richter A, Song M, Cao G, Ouyang H, Kuzyakov Y. 2014. Nutrient limitation of alpine plants: implications from leaf N: P stoichiometry and δ15 N. P stoichiometry and leaf δ 15 N. J Plant Nutr Soil Sci 177:378–87.CrossRefGoogle Scholar
  65. Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B. 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14:1592–9.CrossRefGoogle Scholar
  66. Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J. 2013. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Change Biol 19:637–48.CrossRefGoogle Scholar
  67. Yang Y, Fang J, Ji C, Han W. 2009. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci 20:177–84.CrossRefGoogle Scholar
  68. Yuan Z, Li L, Han X, Chen S, Wang Z, Chen Q, Bai W. 2006. Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia 148:564–72.CrossRefPubMedGoogle Scholar
  69. Zhang S, Chen D, Sun D, Wang X, Smith JL, Du G. 2012. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China. Biol Fertil Soils 48:393–400.CrossRefGoogle Scholar
  70. Zhou L, Song M, Wang S, Fan J, Liu J, Zhong H, Yu G, Gao L, Hu Z, Chen B, Wu W, Song T. 2014. Patterns of soil 15N and total N and their relationship with environmental factors on the Qinghai-Tibetan Plateau. Pedosphere 24:232–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Per-Marten Schleuss
    • 1
    Email author
  • Felix Heitkamp
    • 2
  • Yue Sun
    • 1
    • 3
  • Georg Miehe
    • 4
  • Xingliang Xu
    • 3
  • Yakov Kuzyakov
    • 1
    • 5
    • 6
  1. 1.Department of Soil Science of Temperate EcosystemsGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Faculty of Geoscience and Geography, Landscape EcologyGeorg-August-Universität GöttingenGöttingenGermany
  3. 3.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  4. 4.Faculty of GeographyUniversity of MarburgMarburgGermany
  5. 5.Department of Agricultural Soil ScienceGeorg-August-Universität GöttingenGöttingenGermany
  6. 6.Institute of Environmental SciencesKazan Federal UniversityKazanRussia

Personalised recommendations