Skip to main content
Log in

Underlying Ecosystem Emissions Exceed Cattle-Emitted Methane from Subtropical Lowland Pastures

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Cattle are a major methane (CH4) source from pasture ecosystems; however, the underlying landscape can be a significant and unaccounted source of CH4. In general, landscape CH4 emissions are poorly quantified, vary widely across time and space, and are easily underestimated if emission hotspots or episodic fluxes are overlooked. In this study, CH4 emissions from subtropical lowland pastures were quantified using static chambers, eddy covariance, and mobile spectrometer surveys. Landscape emissions were the dominant CH4 source, and cattle were responsible for 19–30% of annual emissions. The entire ecosystem emitted 33.84 ± 2.25 g CH4 m−2 y−1 as estimated by eddy covariance-measured fluxes. Landscape emissions were highly variable, and seasonal flooding drove high magnitude emissions from the underlying landscape. Large CH4 emissions were observed from wetlands and, to a lesser extent, from the entire landscape during the wet season. In contrast, during the dry season, there were no appreciable landscape CH4 emissions, although canals, which cover only 1.7% of the total land area, were responsible for 97.7% of dry-season emissions. Ecosystem CH4 fluxes, measured by eddy covariance, varied seasonally and positively correlated to water table depth, soil and air temperatures, and topsoil water content. The results presented here are the first to use mobile spectrometers to map biogenic CH4 emissions at the landscape scale, and strongly suggest that the underlying landscape is a strong CH4 source that must be considered in addition to cattle emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Allard V, Soussana JF, Falcimagne R, Berbigier P, Bonnefond JM, Ceschia E, D’hour P, Hénault C, Laville P, Martin C. 2007. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric Ecosyst Environ 121:47–58.

    Article  CAS  Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Laffineur Q, Papale D, Reichstein M, Rinne J, Van Gorsel E. 2012. Nighttime flux correction. In: Aubinet M, Vesala T, Papale D, Eds. Eddy covariance a practical guide to measurements and data analysis. New York: Springer. p 133–57.

    Google Scholar 

  • Baldocchi D, Detto M, Sonnentag O, Verfaillie J, Teh YA, Silver W, Kelly NM. 2012. The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agric For Meteorol 153:177–87.

    Article  Google Scholar 

  • Bartlett DS, Bartlett KB, Hartman JM, Harriss RC, Sebacher DI, Pelletier Travis R, Dow DD, Brannon DP. 1989. Methane emissions from the Florida Everglades: patterns of variability in a regional wetland ecosystem. Global Biogeochem Cycles 3:363–74.

    Article  CAS  Google Scholar 

  • Bohlen PJ, Gathumbi SM. 2007. Nitrogen cycling in seasonal wetlands in subtropical cattle pastures. Soil Sci Soc Am J 71:1058–65.

    Article  CAS  Google Scholar 

  • Bohlen PJ, Lynch S, Shabman L, Clark M, Shukla S, Swain H. 2009. Paying for environmental services from agricultural lands: an example from the northern Everglades. Front Ecol Environ 7:46–55.

    Article  Google Scholar 

  • Bohlen PJ, Villapando OR. 2011. Controlling runoff from subtropical pastures has differential effects on nitrogen and phosphorus loads. J Environ Qual 40:989–98.

    Article  CAS  PubMed  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. Wetlands 26:889–916.

    Article  Google Scholar 

  • Conant RT, Paustian K. 2002. Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochem Cycles 16:90-1–9.

    Article  Google Scholar 

  • Conrad R. 2007. Microbial ecology of methanogens and methanotrophs. In: Sparks DL, Ed. Advances in agronomy, vol. 96. Advances in agronomy. New York: Elsevier. p 1–63.

    Chapter  Google Scholar 

  • Dengel S, Levy PE, Grace J, Jones SK, Skiba UM. 2011. Methane emissions from sheep pasture, measured with an open-path eddy covariance system. Glob Change Biol 17:3524–33.

    Article  Google Scholar 

  • Detto M, Montaldo N, Albertson JD, Mancini M, Katul G. 2006. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42:W08419.

    Google Scholar 

  • Devol AH, Richey JE, Forsberg BR, Martinelli LA. 1990. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J Geophys Res 95:16417–26.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (EPA). 2014. Annex 3. Methodological descriptions for additional source or sink categories. Washington DC. pp A125–384.

  • Farrell P, Culling D, Leifer I. 2013. Transcontinental methane measurements: Part 1. A mobile surface platform for source investigations. Atmos Environ 74:422–31.

    Article  CAS  Google Scholar 

  • Florida Climate Center (2013) Big rain events in the Southeast. Florida State Univeristy. http://climatecenter.fsu.edu/climate-data-access-tools/big-rain

  • Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W. 2005. Post-field data quality control. In: Lee X, Massman WJ, Law BE, Eds. Handbook of micrometeorology. Dordrecht: Kulwer Academic Publishers. p 181–208.

    Chapter  Google Scholar 

  • Follett RF, Reed DA. 2010. Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangel Ecol Manag 63:4–15.

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe CD, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Climate change 2007: the physical science basis: contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press. p 129–234.

    Google Scholar 

  • Gathumbi SM, Bohlen PJ, Graetz DA. 2005. Nutrient enrichment of wetland vegetation and sediments in subtropical pastures. Soil Sci Soc Am J 69:539–48.

    Article  CAS  Google Scholar 

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77.

    Article  CAS  Google Scholar 

  • Harriss RC, Sebacher DI, Bartlett KB, Bartlett DS, Crill PM. 1988. Sources of atmospheric methane in the south Florida environment. Global Biogeochem Cycles 2:231–43.

    Article  CAS  Google Scholar 

  • Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD. 2012. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agric Ecosyst Environ 150:1–18.

    Article  CAS  Google Scholar 

  • Hendriks D, van Huissteden J, Dolman AJ. 2010. Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agric For Meteorol 150:757–74.

    Article  Google Scholar 

  • Herbst M, Friborg T, Ringgaard R, Soegaard H. 2011. Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agric For Meteorol 151:841–53.

    Article  Google Scholar 

  • Hersom M. 2002. Pasture stocking density and the relationship to animal performance. University of Florida IFAS Extension AN155.

  • Hiscock JG, Thourot CS, Zhang J. 2003. Phosphorus budget—land use relationships for the northern Lake Okeechobee watershed, Florida. Ecol Eng 21:63–74.

    Article  Google Scholar 

  • Hsieh C-I, Katul G, Chi T-W. 2000. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–72.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2006. Emissions from livestock and manure management. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, Eds. 2006 IPCC guidelines for national greenhouse gas inventories, vol 4. Agricultural, forestry and other land uses. IGES, Japan. pp 10.1–10.87.

  • Jackson RB, Down A, Phillips NG, Ackley RC, Cook CW, Plata DL, Zhao K. 2014. Natural gas pipeline leaks across Washington, DC. Environ Sci Technol 48:2051–8.

    Article  CAS  PubMed  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L. 2013. Three decades of global methane sources and sinks. Nat Geosci 6:813–23.

    Article  CAS  Google Scholar 

  • Kroon PS, Schrier-Uijl AP, Hensen A, Veenendaal EM, Jonker H. 2010. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. Eur J Soil Sci 61:773–84.

    Article  CAS  Google Scholar 

  • Lassey KR. 2007. Livestock methane emission: from the individual grazing animal through national inventories to the global methane cycle. Agric For Meteorol 142:120–32.

    Article  Google Scholar 

  • Leifer I, Culling D, Schneising O, Farrell P, Buchwitz M, Burrows JP. 2013. Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions. Atmos Environ 74:432–41.

    Article  CAS  Google Scholar 

  • Matthes JH, Sturtevant C, Verfaillie J. 2014. Parsing the variability in CH4 flux at a spatially heterogeneous wetland: integrating multiple eddy covariance towers with high-resolution flux footprint analysis. J Geophys Res, in press.

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IB, Novo EM. 2004. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Change Biol 10:530–44.

    Article  Google Scholar 

  • Mitsch WJ, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L. 2010. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecol Manage 18:573–86.

    Article  CAS  Google Scholar 

  • Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A. 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611.

    Article  Google Scholar 

  • Nahlik A, Mitsch WJ. 2011. Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob Change Biol 17:1321–34.

    Article  Google Scholar 

  • Nicolini G, Castaldi S, Fratini G, Valentini R. 2013. A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems. Atmos Environ 81:311–19.

    Article  CAS  Google Scholar 

  • Nieveen JP, Campbell DI, Schipper LA, Blair IJ. 2005. Carbon exchange of grazed pasture on a drained peat soil. Glob Change Biol 11:607–18.

    Article  Google Scholar 

  • Olson DM, Griffis TJ, Noormets A, Kolka R, Chen J. 2013. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. J Geophys Res 118:226–38.

    Article  CAS  Google Scholar 

  • Otter LB, Scholes MC. 2000. Methane sources and sinks in a periodically flooded South African savanna. Global Biogeochem Cycles 14:97–111.

    Article  CAS  Google Scholar 

  • Phillips NG, Ackley R, Crosson ER, Down A, Hutyra LR, Brondfield M, Karr JD, Zhao K, Jackson RB. 2013. Mapping urban pipeline leaks: methane leaks across Boston. Environ Pollut 173:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Core Team R. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:GB1003.

    Article  Google Scholar 

  • Rinne J, Ruitta T, Pihlatie M, Aurela M, Haapanala S, Tuovinen J-P, Tuittila E-S, Vesala T. 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B 59:449–57.

    Article  Google Scholar 

  • Schrier-Uijl AP, Kroon PS, Leffelaar PA, Huissteden JC, Berendse F, Veenendaal EM. 2010a. Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant Soil 329:509–20.

    Article  CAS  Google Scholar 

  • Schrier-Uijl AP, Kroon PS, Hensen A, Leffelaar PA, Berendse F, Veenendaal EM. 2010b. Agricultural and forest meteorology. Agric For Meteorol 150:825–31.

    Article  Google Scholar 

  • Shorter JH, Mcmanus JB, Kolb CE, Allwine EJ, Lamb BK, Mosher BW, Harriss RC, Partchatka U, Fischer H, Harris GW. 1996. Methane emission measurements in urban areas in eastern Germany. J Atmos Chem 24:121–40.

    Article  CAS  Google Scholar 

  • Soussana JF, Tallec T, Blanfort V. 2010. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–50.

    Article  CAS  PubMed  Google Scholar 

  • Swain HM, Boughton EH, Bohlen PJ, Lollis LO. 2013. Trade-offs among ecosystem services and disservices on a Florida ranch. Rangelands 35:75–87.

    Article  Google Scholar 

  • Teh YA, Silver WL, Sonnentag O, Detto M, Kelly M, Baldocchi DD. 2011. Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems 14:311–25.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. 2012. Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. EPA 430-R-12-006 Washington, DC, pp 1–176.

  • Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–26.

    Article  Google Scholar 

  • Wang JM, Murphy JG, Geddes JA, Winsborough CL, Basiliko N, Thomas SC. 2012. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada. Biogeosci Discuss 9:17743–74.

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100.

    Article  Google Scholar 

  • Whiting GJ, Chanton JP, Bartlett DS, Happell JD. 1991. Relationships between CH4 emission, biomass, and CO2 exchange in a subtropical grassland. J Geophys Res 96:13067–71.

    Article  CAS  Google Scholar 

  • Yu K, Faulkner SP, Baldwin MJ. 2008. Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration. Glob Change Biol 14:798–812.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Hilary Swain, Earl Keel, Julia Maki, and the rest of the staff at the MacArthur Agro-ecology Research Center for site access, lodging, transportation, and continued support in the field. We also thank Carl Bernacchi and Nuria Gomez-Casanovas for help with eddy covariance tower setup, maintenance, data transfer, and processing. Archbold Biological Station and the MacArthur Agro-ecology Research Center provided LIDAR data used in this work. Hilary Swainand Nuria Gomez-Casanovas provided helpful comments and edits to the manuscript. This research was supported by the Cornell University Program in Cross-Scale Biogeochemistry and Climate, Department of Ecology and Evolutionary Biology, Andrew W. Mellon Foundation, Cornell Sigma Xi, and University of Illinois USDA ARS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. Chamberlain.

Additional information

Author contributions

SDC and JPS conceived and designed the study, SDC and EHB collected data, SDC and JPS analyzed data, and SDC and JPS wrote the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlain, S.D., Boughton, E.H. & Sparks, J.P. Underlying Ecosystem Emissions Exceed Cattle-Emitted Methane from Subtropical Lowland Pastures. Ecosystems 18, 933–945 (2015). https://doi.org/10.1007/s10021-015-9873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9873-x

Keywords

Navigation