, Volume 18, Issue 5, pp 889–902 | Cite as

Spatial Patterns and Functional Redundancies in a Changing Boreal Lake Landscape

  • David G. AngelerEmail author
  • Craig R. Allen
  • Daniel R. Uden
  • Richard K. Johnson


Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using long-term data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.


adaptive capacity benthic invertebrates functional traits global change landscape ecology redundancy spatial resilience 



The Swedish Environmental Protection Agency, the Swedish Agency for Water and Marine Management, and the many people involved in the monitoring program for making the analyses of these datasets possible are gratefully acknowledged. This work was funded by the August T. Larsson Foundation (NJ Faculty, Swedish University of Agricultural Sciences) and the Swedish Research Councils Vetenskapsrådet (2014-5828) and Formas (2014-1193). The Nebraska Cooperative Fish and Wildlife Research Unit is jointly supported by a cooperative agreement between the U.S. Geological Survey, the Nebraska Game and Parks Commission, the University of Nebraska – Lincoln, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank Graeme Cumming, Dirac Twidwell, and two anonymous reviewers for helpful comments on previous manuscript versions.

Supplementary material

10021_2015_9871_MOESM1_ESM.docx (16 kb)
Appendix 1 Names and geographical position of lakes. Supplementary material 1 (DOCX 15 kb)
10021_2015_9871_MOESM2_ESM.docx (1.1 mb)
Appendix 2 Spatial patterns detected by RDA between 1996 and 2011. Supplementary material 2 (DOCX 1125 kb)
10021_2015_9871_MOESM3_ESM.docx (17 kb)
Appendix 3 Results from variation partitioning analyses between 1996 and 2011. Supplementary material 3 (DOCX 16 kb)


  1. Allen CR, Gunderson L, Johnson AR. 2005. The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems 8:958–66.CrossRefGoogle Scholar
  2. Allen CR, Angeler DG, Garmestani AS, Gunderson LH, Holling CS. 2014. Panarchy: theory and applications. Ecosystems 17:578–89.CrossRefGoogle Scholar
  3. Andersen R, Poulin M, Borcard D, Laiho R, Laine J, Vasander H, Tuittila E-T. 2011. Environmental control and spatial structures in peatland vegetation. J Veg Sci 22:878–90.CrossRefGoogle Scholar
  4. Angeler DG, Drakare S, Johnson RK. 2011. Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecol Soc 16(3):5. doi: 10.5751/ES-04175-160305.Google Scholar
  5. Angeler DG, Johnson RK. 2012. Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecol Appl 22:1172–86.PubMedCrossRefGoogle Scholar
  6. Angeler DG, Allen CR, Johnson RK. 2012. Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales. Ecol Soc 17(2):32. doi: 10.5751/ES-04928-170232.Google Scholar
  7. Angeler DG. 2013. Revealing a conservation challenge through partitioned long-term beta diversity: increasing turnover and decreasing nestedness of boreal lake metacommunities. Divers Distrib 19:772–81.CrossRefGoogle Scholar
  8. Angeler DG, Allen CR, Johnson RK. 2013a. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales. J Appl Ecol 50:572–84.CrossRefGoogle Scholar
  9. Angeler DG, Göthe E, Johnson RK. 2013b. Hierarchical dynamics of ecological communities: do scales of space and time match? PLoS One 8(7):e69174. doi: 10.1371/journal.pone.0069174.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Angeler DG, Drakare S. 2013. Tracing alpha, beta and gamma diversity responses to environmental change in boreal lakes. Oecologia 172:1191–202.PubMedCrossRefGoogle Scholar
  11. Baho DL, Drakare S, Johnson RK, Allen CR, Angeler DG. 2014. Similar resilience characteristics in lakes with different management practices. PLoS One 9(3):e91881. doi: 10.1371/journal.pone.0091881.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bengtsson J, Angelstam P, Elmqvist T, Emanuelsson U, Folke C, Ihse M, Moberg F, Nyström M. 2003. Reserves, resilience and dynamic landscapes. Ambio 32:389–96.PubMedCrossRefGoogle Scholar
  13. Bertolo A, Blanchet FG, Magnan P, Brodeur P, Mingelbier M et al. 2012. Inferring processes from spatial patterns: the role of directional and non-directional forces in shaping fish larvae distribution in a freshwater lake system. PLoS One 7(11):e50239. doi: 10.1371/journal.pone.0050239.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Blanchet FG, Legendre P, Borcard D. 2008. Modelling directional spatial processes in ecological data. Ecol Model 215:325–36.CrossRefGoogle Scholar
  15. Blanchet FG, Legendre P, Maranger R, Monti D, Pepin P. 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166:357–68.PubMedCrossRefGoogle Scholar
  16. Bohman I, Tranvik L. 2001. The effects of shredding invertebrates on the transfer of organic carbon from littoral leaf litter to water-column bacteria. Aquat Ecol 35:43–50.CrossRefGoogle Scholar
  17. Boieiro M, Carvalho JC, Cardoso P, Aguiar CAS, Rego C et al. 2013. Spatial factors play a major role as determinants of endemic ground beetle beta diversity of Madeira Island Laurisilva. PLoS One 8(5):e64591. doi: 10.1371/journal.pone.0064591.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Borcard D, Legendre P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68.CrossRefGoogle Scholar
  19. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:826–1832.CrossRefGoogle Scholar
  20. Burgmer T, Hillebrand H, Pfenninger M. 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93–103.PubMedCrossRefGoogle Scholar
  21. Carpenter S, Walker B, Anderies JM, Abel N. 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4:765–81.CrossRefGoogle Scholar
  22. Clavel J, Julliard R, Devictor V. 2010. Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–8.CrossRefGoogle Scholar
  23. Clavero M, Brotons L. 2010. Functional homogenization of bird communities along habitat gradients: accounting for niche multidimensionality. Glob Ecol Biogeogr 19:684–96.Google Scholar
  24. Cottenie K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–82.PubMedCrossRefGoogle Scholar
  25. Cumming GS. 2011. Spatial resilience in social-ecological systems. London: Springer. p 243.CrossRefGoogle Scholar
  26. Cumming GS, Bodin Ö, Ernstson H, Elmqvist T. 2010. Network analysis in conservation biogeography: challenges and opportunities. Divers Distrib 16:414–25.CrossRefGoogle Scholar
  27. Dray S, Legendre P, Peres-Neto PR. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–93.CrossRefGoogle Scholar
  28. Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J. 2003. Response diversity, ecosystem change and resilience. Front Ecol Environ 1:488–94.CrossRefGoogle Scholar
  29. Evans CD, Monteith DT, Cooper DM. 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71.PubMedCrossRefGoogle Scholar
  30. Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto P. 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–75.Google Scholar
  31. Folke C, Carpenter S, Elmqvist T, Gunderson L, Holling CS, Walker B. 2001. Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio 31:437–40.CrossRefGoogle Scholar
  32. Gallopín GC. 2006. Linkages between vulnerability, resilience and adaptive capacity. Glob Environ Change 16:203–303.CrossRefGoogle Scholar
  33. Göthe E, Angeler DG, Sandin L. 2013. Metacommunity structure in a small boreal stream network. J Animal Ecol 82:449–58.CrossRefGoogle Scholar
  34. Göthe E, Sandin L, Allen CR, Angeler DG. 2014. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience. Ecol Soc 19(3):15. doi: 10.5751/ES-06750-190315.CrossRefGoogle Scholar
  35. Holling CS. 1973. Resilience and stability of ecological systems. Ann Rev Ecol Syst 4:1–23.CrossRefGoogle Scholar
  36. Hooper D, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277:1302–5.CrossRefGoogle Scholar
  37. Hooper DU, Chapin FSIII, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.CrossRefGoogle Scholar
  38. Hughes TP, Carpenter S, Rockström J, Scheffer M, Walker B. 2013. Multiscale regime shifts and planetary boundaries. Trends Ecol Evol 28:389–95.PubMedCrossRefGoogle Scholar
  39. Isbell FI, Polley HW, Wilsey BJ. 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12:443–51.PubMedCrossRefGoogle Scholar
  40. Johnson RK, Goedkoop W, Sandin L. 2004. Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshw Biol 49:1179–94.CrossRefGoogle Scholar
  41. Jost L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:2427–39.PubMedCrossRefGoogle Scholar
  42. Kendall M. 1938. A new measure of rank correlation. Biometrika 30:81–9.CrossRefGoogle Scholar
  43. Kent R, Bar-Massada A, Carmel Y. 2011. Multiscale analyses of mammal species composition—environment relationship in the contiguous USA. PLoS One 6(9):e25440. doi: 10.1371/journal.pone.0025440.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Laliberté E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86.PubMedCrossRefGoogle Scholar
  45. Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–80.CrossRefGoogle Scholar
  46. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–13.CrossRefGoogle Scholar
  47. Leibold MA, Economo EP, Peres-Neto P. 2010. Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol Lett 13:1290–9.PubMedCrossRefGoogle Scholar
  48. Loureau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–8.CrossRefGoogle Scholar
  49. Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: current state and trends. Washington: Island Press.Google Scholar
  50. Monteith DT, Stoddard JL, Evans CD, De Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–41.PubMedCrossRefGoogle Scholar
  51. Mori AS, Furukawa T, Sasaki T. 2013. Response diversity determines the resilience of ecosystems to environmental change. Biol Rev 88:349–64.PubMedCrossRefGoogle Scholar
  52. Nash KL, Allen CR, Angeler DG, Barichievy C, Eason T, Garmestani AS, Graham NAJ, Granholm D, Knutson M, Nelson RJ, Nyström M, Stow CA, Sundstrom SM. 2014. Discontinuities, cross-scale patterns and the organization of ecosystems. Ecology 95:654–67.PubMedCrossRefGoogle Scholar
  53. Peterson GD, Allen CR, Holling CS. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18.CrossRefGoogle Scholar
  54. Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–25.PubMedCrossRefGoogle Scholar
  55. Polasky S, Carpenter SR, Folke C, Keller N. 2011. Decision-making under great uncertainty: environmental management in an era of global change. Trends Ecol Evol 26:398–404.PubMedCrossRefGoogle Scholar
  56. Pool TK, Olden JD. 2012. Taxonomic and functional homogenization of an endemic desert fish fauna. Divers Distrib 18:366–76.CrossRefGoogle Scholar
  57. R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  58. Scheiner SM, Chiarucci A, Fox GF, Helmus MR, McGlinn DJ, Willig MR. 2011. The underpinnings of the relationship of species richness with space and time. Ecol Monogr 81:195–213.CrossRefGoogle Scholar
  59. Schmidt-Kloiber A, Hering D. 2012. The taxa and autecology database for freshwater organisms, version 5.0.
  60. Steiner CF, Long ZT, Krumins JA, Morin PJ. 2005. Temporal stability of aquatic food webs: partitioning the effects of species diversity, species composition and enrichment. Ecol Lett 8:819–28.CrossRefGoogle Scholar
  61. Stendera S, Johnson RK. 2008. Tracking recovery trends of boreal lakes: use of multiple indicators and habitats. J N Am Benthol Soc 27:529–40.CrossRefGoogle Scholar
  62. Tilman D, Reich PB, Knops JMH. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–32.PubMedCrossRefGoogle Scholar
  63. Tuomisto H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22.CrossRefGoogle Scholar
  64. Tuomisto H. 2012. An updated consumer’s guide to evenness and related indices. Oikos 121:1203–18.CrossRefGoogle Scholar
  65. Vandam R, Kaptijn E, Vanschoenwinkel B. 2013. Disentangling the spatio-environmental drivers of human settlement: an eigenvector based variation decomposition. PLoS One 8(7):e67726. doi: 10.1371/journal.pone.0067726.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Van Kleef HH, Brouwer E, Leuven RSEW, van Dam H, de Vires-Brock A, van der Velde G, Esselink H. 2010. Effects of reduced nitrogen and sulphur deposition on the water chemistry of moorland pools. Environ Pollut 158:2679–85.PubMedCrossRefGoogle Scholar
  67. Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Nat Acad Sci USA 96:1463–8.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Wallace JB, Webster JR. 1996. The role of macroinvertebrates in stream ecosystem function. Ann Rev Entomol 41:115–39.CrossRefGoogle Scholar
  69. Wilander A, Johnson RK, Goedkoop W. 2003. Riksinventering 2000. En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Institutionen för Miljöanalys, Uppsala, Sweden.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David G. Angeler
    • 1
    Email author
  • Craig R. Allen
    • 2
  • Daniel R. Uden
    • 3
  • Richard K. Johnson
    • 1
  1. 1.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of Nebraska – LincolnLincolnUSA
  3. 3.Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations