Skip to main content

Advertisement

Log in

Blue-Green Algae in a “Greenhouse Century”? New Insights from Field Data on Climate Change Impacts on Cyanobacteria Abundance

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Climate warming is likely to impact phytoplankton communities by providing a habitat in which cyanobacteria have competitive advantage over other phytoplankton taxa. We used extreme hot weather periods to investigate the potential impact of climate change on cyanobacteria abundance in three large and deep peri-alpine lakes, Lakes Geneva, Annecy, and Bourget. Between 2000 and 2011, there were four extreme warm weather periods: spring and summer 2003, autumn 2006 and winter 2007. We found that the consequences of extreme air temperatures on cyanobacteria abundance and phytoplankton composition depend on the time of year in which the extreme temperatures occur. In all three lakes studied, a warm summer did not clearly promote cyanobacteria blooms, whereas a warm autumn promoted cyanobacteria growth in the mesotrophic Lakes Geneva and Bourget, but not in the oligotrophic Lake Annecy. A warm winter was associated with high cyanobacteria abundance and a high contribution of cyanobacteria to total phytoplankton biomass. Our results reinforce the idea that lakes have an ecological memory by showing that a warm winter can influence subsequent seasonal succession in the cyanobacteria community. In both mesotrophic lakes studied, cyanobacteria abundance was strongly influenced by phosphorus concentrations and winter air temperatures. We conclude that although extreme hot weather periods can be used to analyze various aspects of the impacts of climate change, they are of limited value in forecasting the structure of phytoplankton communities in a warmer future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adrian R, Deneke R, Mischke U, Stellmacher R, Lederer P. 1995. Long-term study of the Heiligensee (1975–1992)—evidence for effects of climatic-change on the dynamics of eutrophied lake ecosystems. Archiv für Hydrobiologie 133:315–37.

    Google Scholar 

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–97.

    Article  PubMed Central  PubMed  Google Scholar 

  • AFNOR. 2006. NF EN 15204. Qualité de l’eau—Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Utermöhl). Afnor. 41 pp.

  • Agawin NRS, Duarte CM, Agustí S. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600.

    Article  CAS  Google Scholar 

  • Alric B, Jenny JP, Berthon V, Arnaud F, Pignol C, Reyss JL, Sabatier P, Perga ME. 2013. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94:2767–87.

    Article  PubMed  Google Scholar 

  • Anneville O, Molinero JC, Souissi S, Gerdeaux D. 2010. Seasonal and interannual variability of cladoceran communities in two peri-alpine lakes: uncoupled response to the 2003 heat wave. J Plankton Res 32:913–25.

    Article  Google Scholar 

  • Anneville O, Souissi S, Gammeter S, Straile D. 2004. Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshw Biol 49:98–115.

    Article  Google Scholar 

  • Anneville O, Souissi S, Ginot V, Ibanez F, Druart J-C, Angeli N. 2002. Temporal mapping of phytoplankton assemblages in Lake Geneva: annual and interannual changes in their patterns of succession. Limnol Oceanogr 47:1355–66.

    Article  Google Scholar 

  • Arheimer B, Andreasson J, Fogelberg S, Johnsson H, Pers CB, Persson K. 2005. Climate change impact on water quality: model results from southern Sweden. Ambio 34:559–66.

    PubMed  Google Scholar 

  • Beauclerk AA, Smith AJ. 1978. Transport of d-glucose and 3-O-methyl-d-glucose in the cyanobacteria Aphanocapsa 6714 and Nostoc strain Mac. Eur J Biochem 82:187–97.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu M, Pick F, Gregory-Eaves I. 2013. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol Oceanogr 58:1736–46.

    Article  CAS  Google Scholar 

  • Beniston M. 2007. Entering into the “greenhouse century”: recent record temperatures in Switzerland are comparable to the upper temperature quantiles in a greenhouse climate. Geophys Res Lett 34:L16710. doi:10.1029/2007GL030144.

    Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof J, Schoell R, Semmler T, Woth K. 2007. Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95.

    Article  Google Scholar 

  • Berthon V, Marchetto A, Rimet F, Dormia E, Jenny JP, Pignol C, Perga ME. 2013. Trophic history of French sub-Alpine lakes over the last similar to 150 years: phosphorus reconstruction and assessment of taphonomic biases. J Limnol 72:417–29.

    Article  Google Scholar 

  • Bourrelly P. 1972. Les algues d’eau douce, Tome II: Les algues jaunes et brunes. Paris: N. Boubée et Cie. pp 1–572.

    Google Scholar 

  • Bourrelly P. 1981. Les algues d’eau douce, Tome II: Les algues jaunes et brunes. Paris: N. Boubée et Cie. pp 1–517.

    Google Scholar 

  • Bourrelly P. 1985. Les algues d’eau douce, Tome III: Les algues bleues et rouges. Paris: N. Boubée et Cie. pp 1–606.

    Google Scholar 

  • Brettum P. 1989. Algen als Indikatoren für die Gewässerqualität in norwegischen Binnenseen [Translation from Norvegian, Meier B.G., 2000]. Oslo: Norsk Institutt for vannforskning (NIVA). p 102.

    Google Scholar 

  • Butterwick C, Heaney SI, Talling JF. 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50:291–300.

    Article  Google Scholar 

  • Callieri C. 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater reviews 1:1–28.

    Article  Google Scholar 

  • Callieri C. 2010. Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. J Limnol 69:257–77.

    Article  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–407.

    Article  CAS  PubMed  Google Scholar 

  • Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther J-G. 2013. Introduction. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Lautier J, Pastoureaud A, Souchu P, Vaquer A. 2009. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern. J Sea Res 61:68–75.

    Article  Google Scholar 

  • De Senerpont Domis LN, Mooij WM, Huisman J. 2007. Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584:403–13.

    Article  Google Scholar 

  • Dokulil M, Teubner K. 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698:29–46.

    Article  CAS  Google Scholar 

  • Dolédec S, Chessel D. 1989. Rythmes saisonniers et composantes stationnelles en milieu aquatique II—Prise en compte et élimination d’effets dans un tableau faunistique. Acta Œcologica/Œcologia Generalis 10:207–32.

    Google Scholar 

  • Domaizon I, Savichtcheva O, Debroas D, Arnaud F, Villar C, Pignol C, Alric B, Perga ME. 2013. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences 10:3817–38.

    Article  Google Scholar 

  • Domaizon I, Perga ME, Rimet F, Guillard J, Savoye L, Jacquet S, Lainé L, Colon M, Hamelet V, Lasne E. 2014. Suivi de la qualité des eaux du lac d’Annecy. In: SILA, Ed. Rapport 2013. INRA-Thonon. 90 pp.

  • Drake JA. 1991. Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat 137:1–26.

    Article  Google Scholar 

  • Edwards M, Richardson AJ. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–4.

    Article  CAS  PubMed  Google Scholar 

  • Ekvall MK, De la Calle MJ, Faassen EJ, Gustafsson S, Lürling M, Hansson LA. 2013. Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw Biol 58:2414–22.

    CAS  Google Scholar 

  • Elliott JA. 2012. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res 46:1364–71.

    Article  CAS  PubMed  Google Scholar 

  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–96.

    Article  Google Scholar 

  • Gallina N. 2012. Description and modeling of phytoplankton with an emphasis of cyanobacteria in deep peri-alpine lakes under warmer climatic conditions. PhD thesis, University of Geneva. 106 pp.

  • Gallina N, Anneville O, Beniston M. 2011. Impacts of extreme air temperatures on cyanobacteria in five deep peri-alpine lakes. J Limnol 70:186–96.

    Article  Google Scholar 

  • Hodge S, Arthur W, Mitchell P. 1996. Effects of temporal priority on interspecific interactions and community development. Oikos 76:350–8.

    Article  Google Scholar 

  • Huber V, Adrian R, Gerten D. 2010. A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55:1769–79.

    Google Scholar 

  • Huber V, Wagner C, Gerten D, Adrian R. 2012. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169:245–56.

    Article  PubMed  Google Scholar 

  • IPCC. 2001. Climate change 2001: synthesis report—a contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jacquet S, Briand JF, Leboulanger C, Avois C, Oberhaus L, Tassin B, Vinçon-Leite B, Paolini G, Druart JC, Anneville O, Humbert JF. 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4:651–72.

    Article  Google Scholar 

  • Jacquet S, Cachera S, Colon M, Girel C, Guillard J, Hamelet V, Hustache J-C, Kerrien F, Lacroix D, Laine L, Laplace-Treyture C, Lazzarotto J, Paolini G, Perga ME, Perney P, Rimet F, Verneaux V. 2013. Suivi environnemental des eaux du lac du Bourget pour l’année 2012. Rapport INRA-CISALB-CALB, 226 pp.

  • Jacquet S, Domaizon I, Anneville O. 2012. Evolution de paramètres clés indicateurs de la qualité des eaux et du fonctionnement écologique des grands lacs péri-alpins (Léman, Annecy, Bourget): Etude comparative de trajectoires de restauration post-eutrophisation. Archives des Sciences 65:191–208.

    CAS  Google Scholar 

  • Jacquet S, Domaizon I, Anneville O. 2014a. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget and Geneva. Environ Monit Assess 186:3455–76. doi:10.1007/s10661-014-3630-z.

    Article  PubMed  Google Scholar 

  • Jacquet S, Kerimoglu O, Rimet F, Paolini G, Anneville O. 2014b. Cyanobacterial bloom termination: the disappearance of Planktothrix rubescens from Lake Bourget (France) after restoration. Freshw Biol 59:2472–87. doi:10.1111/fwb.12444.

    Article  Google Scholar 

  • Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51:815–19.

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–74.

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M. 2005. Lakes responses to reduced nutrient loading—an analysis of contemporary long term data from 35 case studies. Freshw Biol 50:1747–71.

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP. 2003. Climatic warming and regime shifts in lake food webs—some comments. Limnol Oceanogr 48:1346–9.

    Article  Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512.

    Article  Google Scholar 

  • Kaiblinger C, Anneville O, Tadonleke R, Rimet F, Druart JC, Guillard J, Dokulil MT. 2009. Central European water quality indices applied to long-term data from peri-alpine lakes: test and possible improvements. Hydrobiologia 633:67–74.

    Article  CAS  Google Scholar 

  • Kerimoglu O, Rinke K. 2013. Mixing in polymictic water bodies under varying hydrological and meteorological conditions. Water Resour Res 49:7518–27.

    Article  Google Scholar 

  • Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, Van Oldenborgh GJ, Vecchi G, Wang HJ. 2013. Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Climate change 2013: the physical sciences basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kosaka Y, Xie S-P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–7.

    Article  CAS  PubMed  Google Scholar 

  • Kosten S, Huszar VLM, Bécares E, Costa LS, Van Donk E, Hansson L-A, Jeppesen E, Lacerot G, Kruk C, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M. 2012. Warmer climate boosts cyanobacterial dominance in shallow lakes. Glob Chang Biol 18:118–26.

    Article  Google Scholar 

  • Lazzarotto J, Quetin P, Klein A. 2013. Physical-chemical changes in the waters of Lake Geneva (major-elements). Rapport de la Commission Internationale pour la protection des eaux du Léman contre la pollution. Campagne 2012:16–46.

    Google Scholar 

  • Laurent P.1970. Étude de la pollution du lac du Bourget, campagne 1969. Rapport INRA-Thonon. p 16.

  • Livingstone DM. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Chang 57:205–25.

    Article  Google Scholar 

  • Louette G, De Meester L. 2007. Predation and priority effects in experimental zooplankton communities. Oikos 116:419–26.

    Article  Google Scholar 

  • Mearns LO, Rosenzweig C, Goldberg R. 1997. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Clim Chang 35:367–96.

    Article  Google Scholar 

  • Monod R, Blanc P, Corvi C. 1984. Le régime thermique du Léman. CIPEL, Ed. Le Léman synthèse 1957–1982. Lausanne. p 75–88.

  • O’Reilly CM, Alin SR, Plisnier PD, Cohen AS, McKee BA. 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–8.

    Article  PubMed  Google Scholar 

  • Padisak J. 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary) a dynamic approach to ecological memory, its possible role and mechanisms. J Ecol 80:217–30.

    Article  Google Scholar 

  • Pearl HW, Huisman J. 2008. Blooms like it hot. Science 320:57–8.

    Article  Google Scholar 

  • Pearl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microb Ecol 65:995–1010. doi:10.1007/s00248-012-0159-y.

    Article  Google Scholar 

  • Pelletier J-P, Orand A. 1978. Appareil de prélèvement d’un échantillon dans un fluide. Brevet d’invention 76:08579.

    Google Scholar 

  • Personnic S, Domaizon I, Sime-Ngando T, Jacquet S. 2009. Seasonal variations of microbial abundances and virus-versus flagellate-induced mortality of picoplankton in three peri-alpine lakes. J Plankton Res 31:1161–77.

    Article  Google Scholar 

  • Pomati F, Matthews B, Jokela J, Schildknecht A, Ibelings BW. 2012. Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake. Oikos 121:1317–27.

    Article  CAS  Google Scholar 

  • Posch T, Koester O, Salcher M, Pernthaler J. 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Chang 2:809–13.

    Article  CAS  Google Scholar 

  • Reynolds CS. 1999. With or against the grain: responses of phytoplankton to pelagic variability. Mar Biol Assoc U K Occas Publ 6:15–43.

    Google Scholar 

  • Reynolds CS. 2006. Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rigosi A, Carey CC, Ibelings BW, Brookes JD. 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59:99–114.

    Article  Google Scholar 

  • Salmaso N, Cerasino L. 2012. Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia 698:17–28.

    Article  CAS  Google Scholar 

  • Savichtcheva AO, Debroas D, Perga ME, Arnaud F, Villar C, Lyautey E, Kirkham A, Chardon C, Alric B, Domaizon I. 2014. Effects of nutrients and warming on Planktothrix dynamics and diversity: a palaeolimnological view based on sedimentary DNA and RNA. Freshw Biol 60:31–49. doi:10.1111/fwb.12465.

    Article  Google Scholar 

  • Scheffer M, Straile D, Van Nes EH, Hosper H. 2001. Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–3.

    Article  Google Scholar 

  • Shatwell T, Köhler J, Nicklisch A. 2008. Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Chang Biol 14:1–7.

    Article  Google Scholar 

  • Sivonen K, Jones G. 1999. Cyanobacterial toxins. In: Chorus I, Bartram J, Eds. Toxic cyanobacteria in water. London: E & FN Spon. p 41–111.

    Google Scholar 

  • Stich HB, Brinker A. 2010. Oligotrophication outweighs effects of global warming in a large, deep, stratified lake ecosystem. Glob Chang Biol 16:877–88.

    Article  Google Scholar 

  • Straile D, Kerimoglu O, Peeters F, Jochimsen MC, Kümmerlin R, Rinke K, Rothhaupt K-O. 2010. Effects of a half a millennium winter on a deep lake—a shape of things to come? Glob Chang Biol 16:2844–56.

    Article  Google Scholar 

  • Taranu ZE, Zurawell RW, Pick F, Gregory-Eaves I. 2012. Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Glob Chang Biol 18:3477–90.

    Article  Google Scholar 

  • Trolle D, Hamilton DP, Pilditch CA, Duggan IC, Jeppesen E. 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: implications for lake restoration and management. Environ Model Softw 26:354–70.

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur Vervollkommung der quantitativen Phytoplankton-methodik. Mitteilungen Internationale Vereinigung für theoretische und angewandte Limnologie 9:1–38.

    Google Scholar 

  • Vinçon-Leite B. 2014. 2014 Fonctionnement des écosystèmes lacustres dans les bassins versants anthropisés—mesures et modèles. Janvier: Mémoire d’habilitation à diriger des recherches de l’Université Paris-Est.

    Google Scholar 

  • Walsby A, Avery A, Schanz F. 1998. The critical pressures of gas vesicles in Planktothrix rubescens in relation to the depth of winter mixing in Lake Zurich, Switzerland. J Plankton Res 20:1357–75.

    Article  Google Scholar 

  • Weyhenmeyer GA. 2001. Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30:565–71.

    CAS  PubMed  Google Scholar 

  • Wigley TML, Raper SCB. 2001. Interpretation of high projections for global-mean warming. Science 293:451–4.

    Article  CAS  PubMed  Google Scholar 

  • Winder M, Schindler DE. 2004. Climatic effects on the phenology of lake processes. Glob Chang Biol 10:1844–56.

    Article  Google Scholar 

  • Winder M, Sommer U. 2012. Phytoplankton response to a changing climate. Hydrobiologia 698:5–16.

    Article  Google Scholar 

Download references

Acknowledgements

Data for Lake Geneva, Lake Annecy, and Lake Bourget were collected as part of regular sampling carried out by the CIPEL, SILA, and CISALB, respectively. This paper is a contribution to the SOERE OLA. O. K. was funded by the University of Savoie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlane Anneville.

Additional information

Authors contribution

OA prepared and analyzed the data, proceeded to article’s review and wrote the manuscript. ID prepared the data, proceeded to article’s review and wrote the manuscript. OK prepared the data, proceeded to article’s review and wrote the manuscript. FR contributed data and proceeded to article’s review. SJ prepared the data, proceeded to article’s review and wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anneville, O., Domaizon, I., Kerimoglu, O. et al. Blue-Green Algae in a “Greenhouse Century”? New Insights from Field Data on Climate Change Impacts on Cyanobacteria Abundance. Ecosystems 18, 441–458 (2015). https://doi.org/10.1007/s10021-014-9837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9837-6

Keywords

Navigation