Skip to main content

Long-Term Increase in Aboveground Carbon Stocks Following Exclusion of Grazers and Forest Establishment in an Alpine Ecosystem

Abstract

Ecosystem stores of carbon are a key component in the global carbon cycle. Many studies have examined the impact of climate change on ecosystem carbon storage, but few have investigated the impact of land-use change and herbivory. However, land-use change is a major aspect of environmental change, and livestock grazing is the most extensive land use globally. In this study, we combine a grazing exclosure experiment and a natural experiment to test the impact of grazer exclusion on vegetation dynamics and ecosystem carbon stores in the short term (12-year exclosures), and the long term (islands inaccessible to livestock), in a heavily grazed mountain region in Norway. Following long-term absence of sheep, birch forest was present. The grazing-resistant grass Nardus stricta, dominated under long-term grazing, whilst the selected grass Deschampsia flexuosa and herb species dominated the vegetation layer in the long-term absence of sheep. The established birch forest led to vegetation carbon stocks being higher on the islands (0.56 kg C m−2 on the islands compared to 0.18 kg C m−2 where grazed) and no difference in soil carbon stocks. In the short-term exclusion of sheep, there were minor differences in carbon stocks reflecting the longer term changes. These results show that aboveground carbon stocks are higher in the long-term absence of sheep than in the continual presence of high sheep densities, associated with a vegetation state change between tundra and forest. The reduction of herbivore populations can facilitate forest establishment and increase aboveground carbon stocks, however, the sequestration rate is low.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Apollonio M, Andersen R, Putman R. 2010. European ungulates and their management in the 21st century. Cambridge: Cambridge University Press.

    Google Scholar 

  2. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. 2004. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–99.

    Article  Google Scholar 

  3. Augustine DJ, McNaughton SJ. 2004. Regulation of shrub dynamics by native browsing ungulates on East African rangeland. J Appl Ecol 41:45–58.

    Article  Google Scholar 

  4. Austrheim G, Evju M, Mysterud A. 2005. Herb abundance and life-history traits in two contrasting alpine habitats in southern Norway. Plant Ecol 179:217–29.

    Article  Google Scholar 

  5. Austrheim G, Mysterud A, Hassel K, Evju M, Okland RH. 2007. Interactions between sheep, rodents, graminoids, and bryophytes in an oceanic alpine ecosystem of low productivity. Ecoscience 14:178–87.

    Article  Google Scholar 

  6. Austrheim G, Solberg EJ, Mysterud A. 2011. Spatio-temporal distribution of large herbivores in Norway from 1949 to 1999: has decreased grazing by domestic herbivores been countered by increased browsing by cervids? Wildl Biol 17:1–13.

    Article  Google Scholar 

  7. Austrheim G, Speed JDM, Martinsen V, Mulder J, Mysterud A. in press. Experimental effects of herbivore density on aboveground plant biomass in an alpine grassland ecosystem. Arct. Antarct. Alp. Res.

  8. Batllori E, Blanco-Moreno JM, Ninot JM, Gutierrez E, Carrillo E. 2009. Vegetation patterns at the alpine treeline ecotone: the influence of tree cover on abrupt change in species composition of alpine communities. J Veg Sci 20:814–25.

    Article  Google Scholar 

  9. Bremmer JM, Mulvaney CS. 1982. Nitrogen-total. In: Page AL, Miller RH, Keeney DR, Eds. Methods of soil analysis. Part 2. Agronomy 9. Madison, WI: American Society of Agronomy. p 595–624.

    Google Scholar 

  10. Bryn A, Dourojeanni P, Hemsing LØ, O’Donnell S. 2013. A high-resolution GIS null model of potential forest expansion following land use changes in Norway. Scand J For Res 28:81–98.

    Article  Google Scholar 

  11. Cahoon SMP, Sullivan PF, Post E, Welker JM. 2012. Large herbivores limit CO2 uptake and suppress carbon cycle responses to warming in West Greenland. Glob Change Biol 18:469–79.

    Article  Google Scholar 

  12. Cairns DM, Moen J. 2004. Herbivory influences tree lines. J Ecol 92:1019–24.

    Article  Google Scholar 

  13. Cao M, Woodward FI. 1998a. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–52.

    Article  CAS  Google Scholar 

  14. Cao M, Woodward FI. 1998b. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol 4:185–98.

    Article  Google Scholar 

  15. Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA. 2000. Contributions of land-use history to carbon accumulation in U.S. forests. Science 290:1148–51.

    PubMed  Article  CAS  Google Scholar 

  16. Chapin F, Sturm M, Serreze M, McFadden J, Key J, Lloyd A, McGuire A, Rupp T, Lynch A, Schimel J. 2005. Role of land-surface changes in Arctic summer warming. Science 310:657–60.

    PubMed  Article  CAS  Google Scholar 

  17. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–7.

    PubMed  Article  CAS  Google Scholar 

  18. De Deyn GB, Cornelissen JHC, Bardgett RD. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–31.

    PubMed  Article  Google Scholar 

  19. de Wit HA, Bryn A, Hofgaard A, Karstensen J, Kvalevåg MM, Peters GP. 2013. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Glob. Change Biol. doi:10.1111/gcb.12483.

  20. Drabløs D. 1997. Soga om smalen: Norsk sau- og geitalslag. Otta: Norsk sau- og geitalslag. p 592.

    Google Scholar 

  21. Eide W, Birks HH, Bigelow NH, Peglar SM, Birks HJB. 2006. Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. Veg Hist Archaeobot 15:65–85.

    Article  Google Scholar 

  22. Forbes BC, Kumpula T. 2009. The ecological role and geography of reindeer (Rangifer tarandus) in northern Eurasia. Geogr Compass 3:1356–80.

    Article  Google Scholar 

  23. Frank DA, Groffman PM. 1998. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79:2229–41.

    Article  Google Scholar 

  24. Harrison KA, Bardgett RD. 2008. Impacts of grazing and browsing by large herbivores on soils and soil biological properties. The ecology of browsing and grazing. Lancaste: Lancaster University. pp 201–16.

    Google Scholar 

  25. Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2:875–9.

    Article  CAS  Google Scholar 

  26. Hidding B, Tremblay J-P, Côté SD. 2013. A large herbivore triggers alternative successional trajectories in the boreal forest. Ecology 94:2852–60.

    PubMed  Article  Google Scholar 

  27. Hobbie SE, Nadelhoffer KJ, Högberg P. 2002. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–70.

    Article  CAS  Google Scholar 

  28. Hofgaard A, Dalen L, Hytteborn H. 2009. Tree recruitment above the treeline and potential for climate-driven treeline change. J Veg Sci 20:1133–44.

    Article  Google Scholar 

  29. IIUSS Working Group WRB. 2006. World reference base for soil resources 2006. Rome: FAO. pp 1–145.

    Google Scholar 

  30. Kammer A, Hagedorn F, Shevchenko I, Leifeld J, Guggenberger G, Goryacheva T, Rigling A, Moiseev P. 2009. Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob Change Biol 15:1570–83.

    Article  Google Scholar 

  31. Kjønaas O, Aalde H, Dalen LS, de Wit HA, Eldhuset T, Øyen B. 2000. Carbon stocks in Norwegian forested systems. Preliminary data. Biotechnol Agron Soc Environ 4:311–14.

    Google Scholar 

  32. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–3.

    PubMed  Article  CAS  Google Scholar 

  33. Martinsen V, Mulder J, Austrheim G, Mysterud A. 2011. Carbon storage in low-alpine grassland soils: effects of different grazing intensities of sheep. Eur J Soil Sci 62:822–33.

    Article  CAS  Google Scholar 

  34. McNaughton SJ. 1984. Grazing lawns—animals in herds, plant form, and coevolution. Am Nat 124:863–86.

    Article  Google Scholar 

  35. McSherry ME, Ritchie ME. 2013. Effects of grazing on grassland soil carbon: a global review. Glob Change Biol 19:1347–57.

    Article  Google Scholar 

  36. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–6.

    PubMed  Article  CAS  Google Scholar 

  37. Molau U, Larsson EL. 2000. Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Botany 78:728–47.

    Article  Google Scholar 

  38. Nelson DW, Sommers LE. 1982. Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR, Eds. Methods of soil analysis. Part 2. Agronomy 9. Madison, WI: American Society of Agronomy. p 539–79.

    Google Scholar 

  39. Norwegian Ministry of Agriculture and Food. 2011. Stortingsmelding nr. 9 (2011–2012). Landbruks- og matpolitikken. Velkommen til bords. Oslo, Norway: Det Kongelige Landbruks- og Matdepartement. p 302.

  40. Oechel WC, Hastings SJ, Vourlrtis G, Jenkins M, Riechers G, Grulke N. 1993. Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–3.

    Article  Google Scholar 

  41. Olofsson J. 2006. Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. J Ecol 94:431–40.

    Article  Google Scholar 

  42. Olofsson J, Stark S, Oksanen L. 2004. Reindeer influence on ecosystem processes in the tundra. Oikos 105:386–96.

    Article  CAS  Google Scholar 

  43. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O. 2009. Herbivores inhibit climate driven shrub expansion on the tundra. Glob Change Biol 15:2681–93.

    Article  Google Scholar 

  44. Piñeiro G, Paruelo JM, Oesterheld M, Jobbágy EG. 2010. Pathways of grazing effects on soil organic carbon and nitrogen. Rangel Ecol Manag 63:109–19.

    Article  Google Scholar 

  45. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2014. nlme: linear and nonlinear mixed effects models. R package version 3.1-117.

  46. R Development Core Team. 2012. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  47. Sira Kvina Kraftselskap. 2010. http://www.sirakvina.no/Prosjekter-og-anlegg/Hovedmagasiner/. Accessed 12 June 2013.

  48. Rekdal Y, Angeloff M. 2007. Vegetasjon og beite i Setesdal Vesthei. Skog og Landskap 08/07. p 40.

  49. Sjögersten S, Wookey PA. 2009. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. AMBIO 38:2–10.

    PubMed  Article  Google Scholar 

  50. Sjögersten S, Alewell C, Cécillon L, Hagedorn F, Jandl R, Leifeld J, Martinsen V, Schindlbacher A, Sebastià M, Van Miegroet H. 2011. Mountain soils in a changing climate—vulnerability of carbon stocks and ecosystem feedbacks. In: Jandl R, Rodeghiero M, Olsson M, Eds. Soil carbon in sensitive European ecosystems: from science to land management. Chichester: Wiley-Blackwell. p 118–48.

    Chapter  Google Scholar 

  51. Smith WK, Germino MJ, Hancock TE, Johnson DM. 2003. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–12.

    PubMed  Article  Google Scholar 

  52. Smith SW, Vandenberghe C, Hastings A, Johnson D, Pakeman RJ, van Der Wal R, Woodin SJ. 2013. Optimizing carbon storage within a spatially heterogeneous upland grassland through sheep grazing management. Ecosystems. doi:10.1007/s10021-10013-19731-10027.

    Google Scholar 

  53. Speed JDM, Austrheim G, Hester AJ, Mysterud A. 2010a. Experimental evidence for herbivore limitation of the treeline. Ecology 91:3414–20.

    PubMed  Article  Google Scholar 

  54. Speed JDM, Woodin SJ, Tømmervik H, van der Wal R. 2010b. Extrapolating herbivore-induced carbon loss across an arctic landscape. Polar Biol 33:789–97.

    Article  Google Scholar 

  55. Speed JDM, Austrheim G, Hester AJ, Mysterud A. 2011a. Browsing interacts with climate to determine tree-ring increment. Funct Ecol 25:1018–23.

    Article  Google Scholar 

  56. Speed JDM, Austrheim G, Hester AJ, Mysterud A. 2011b. Growth limitation of mountain birch caused by sheep browsing at the altitudinal treeline. For Ecol Manag 261:1344–52.

    Article  Google Scholar 

  57. Tanentzap AJ, Coomes DA. 2012. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biol Rev 87:72–94.

    PubMed  Article  Google Scholar 

  58. Tasser E, Walde J, Tappeiner U, Teutsch A, Noggler W. 2007. Land-use changes and natural reforestation in the Eastern Central Alps. Agric Ecosyst Environ 118:115–29.

    Article  Google Scholar 

  59. Van der Wal R. 2006. Do herbivores cause habitat degradation or vegetation state transition? Evidence from the tundra. Oikos 114:177–86.

    Article  Google Scholar 

  60. Vitousek PM. 1994. Beyond global warming: ecology and global change. Ecology 75:1861–76.

    Article  Google Scholar 

  61. Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30.

    Article  Google Scholar 

  62. Wehberg J, Thannheiser D, Meier K-D. 2005. Vegetation of the mountain birch forest in Northern Fennoscandia. In: Wielgolaski FE, Karlsson PS, Neuvonen S, Thannheiser D, Eds. Plant ecology, herbivory, and human impact in Nordic mountain birch forests. Berlin: Springer. p 35–73.

    Chapter  Google Scholar 

  63. Wilmking M, Harden J, Tape K. 2006. Effect of tree line advance on carbon storage in NW Alaska. J Geophys Res Biogeosci 111:G02023.

    Article  Google Scholar 

  64. Zald HJ. 2009. Extent and spatial patterns of grass bald land cover change (1948–2000), Oregon Coast Range, USA. Plant Ecol 201:517–29.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Norwegian Research Council for funding through the Environment 2015 program (Project 212897). We also thank Magdalena Rygalska for help with sampling and laboratory analyses, and Christoffer Høyvik Hilde, and Odd Helge Tunheim for field assistance. Insightful and constructive comments from two anonymous reviewers greatly contributed to this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James D. M. Speed.

Additional information

Author contributions

JDMS, VM & GA carried out fieldwork and designed the study with input from AM, JM and ØH. GA and AM set up the exclosures. VM analyzed soil and vegetation samples. JDMS analyzed the data with input from VM. All authors contributed with interpretation of data and patterns. JDMS wrote the manuscript with input from all co-authors.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Speed, J.D.M., Martinsen, V., Mysterud, A. et al. Long-Term Increase in Aboveground Carbon Stocks Following Exclusion of Grazers and Forest Establishment in an Alpine Ecosystem. Ecosystems 17, 1138–1150 (2014). https://doi.org/10.1007/s10021-014-9784-2

Download citation

Keywords

  • biomass
  • tundra
  • herbivory
  • land-use
  • livestock
  • treeline