Advertisement

Ecosystems

, Volume 17, Issue 5, pp 890–905 | Cite as

Long-term Impacts of Contrasting Management of Large Ungulates in the Arctic Tundra-Forest Ecotone: Ecosystem Structure and Climate Feedback

  • Martin Biuw
  • Jane U. Jepsen
  • Juval Cohen
  • Saija H. Ahonen
  • Mysore Tejesvi
  • Sami Aikio
  • Piippa R. Wäli
  • Ole Petter L. Vindstad
  • Annamari Markkola
  • Pekka Niemelä
  • Rolf A. Ims
Article

Abstract

The arctic forest-tundra ecotone (FTE) represents a major transition zone between contrasting ecosystems, which can be strongly affected by climatic and biotic factors. Expected northward expansion and encroachment on arctic tundra in response to climate warming may be counteracted by natural and anthropogenic processes such as defoliating insect outbreaks and grazing/browsing regimes. Such natural and anthropogenic changes in land cover can substantially affect FTE dynamics, alter ground albedo (index of the amount of solar energy reflected back into the atmosphere) and provide important feedbacks into the climate system. We took advantage of a naturally occurring contrast between reindeer grazing regimes in a border region between northern Finland and Norway which was recently defoliated by an outbreak of the geometrid moth. We examined ecosystem-wide contrasts between potentially year-round (but mainly summer) grazed (YRG) regions in Finland and mainly winter grazed (WG) regions in Norway. We also used a remotely sensed vegetation index and albedo to quantify effects on local energy balance and potential climate feedbacks. Although differences in soil characteristics and ground vegetation cover were small, we found dramatic differences in the tree layer component of the ecosystem. Regeneration of mountain birch stands appears to have been severely hampered in the YRG regime, by limiting regeneration from basal shoots and reestablishment of individual trees from saplings. This has led to a more open forest structure and a significant 5% increase in spring albedo in the summer grazed compared to the winter grazed regions. This supports recent suggestions that ecosystem processes in the Arctic can significantly influence the climate system, and that such processes must be taken into account when developing climate change scenarios and adaptation strategies.

Key words:

Arctic vegetation climate change insect defoliation grazing climate feedback reindeer husbandry 

Notes

Acknowledgments

This study is a contribution from Work Package 4 (WP4) of the Nordic Centre of Excellence—How to preserve the tundra in a warming climate (NCoE-Tundra) funded by the Norden Top-Level Initiative “Effect studies and adaptation to climate change.” Additional funding was obtained from FRAM—High North Research Centre for Climate and the Environment, the Norwegian Research Council, the Norwegian Institute for Nature Research, the University of Tromsø, and the Academy of Finland (Project #138309). We thank Maja S. Kvalvik, Lauri Kapari, Sabrina Schultze, Jakob Iglhaut, Moritz Klinghardt, Elina Vainio, Ilkka Syvänperä and Marianne Iversen for assistance during field work, and Tuulikki Pakonen and Tarja Törmänen for assistance with nutrient analyses.

Supplementary material

10021_2014_9767_MOESM1_ESM.docx (784 kb)
Supplementary material 1 (DOCX 779 kb)

References

  1. Aune S, Hofgaard A, Söderström L. 2011. Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can J For Res 41(3):437–49.CrossRefGoogle Scholar
  2. Bates D, Maechler M, Bolker B. 2012. lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. http://CRAN.R-project.org.
  3. Bewley D, Essery R, Pomeroy J, Ménard C. 2010. Measurements and modelling of snowmelt and turbulent heat fluxes over shrub tundra. Hydrol Earth Syst Sci 14(7):1331–40.CrossRefGoogle Scholar
  4. Bohner A, Starlinger F, Koutecky P. 2012. Vegetation changes in an abandoned montane grassland, compared to changes in a habitat with low-intensity sheep grazing - a case study in Styria, Austria. Eco Mont 4(2):5–12.Google Scholar
  5. Bonfils CJW, Phillips TJ, Lawrence DM, Cameron-Smith P, Riley WJ, Subin ZM. 2012. On the influence of shrub height and expansion on northern high latitude climate. Environ Res Lett 7(1):015503.CrossRefGoogle Scholar
  6. Bråthen KA, Hagberg O. 2004. More efficient estimation of plant biomass. J Veg Sci 15(5):653–60.CrossRefGoogle Scholar
  7. Bråthen KA, Ims RA, Yoccoz NG, Fauchald P, Tveraa T, Hausner VH. 2007. Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems 10(5):773–89.CrossRefGoogle Scholar
  8. CAFF. 2010. Arctic biodiversity trends 2010—selected indicators of change. Akureyri: CAFF International Secretariat.Google Scholar
  9. Callaghan TV, Crawford RMM, Eronen M, Hofgaard A, Payette S, Rees WG, Skre O, Sveinbjornsson J, Vlassova TK, Werkman BR. 2002. The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research. AMBIO 12:3–5.Google Scholar
  10. Cameron A, Trivedi P. 1998. Regression analysis of count data. New York: Cambridge University Press.CrossRefGoogle Scholar
  11. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Microbes and Health Sackler Colloquium: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [Microbiology]. Proc Natl Acad Sci 108(Suppl 1):4516–22.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310(5748):657–60.PubMedCrossRefGoogle Scholar
  13. Christensen RHB. 2012. Ordinal—regression models for ordinal data. R package version 2013.9-30. http://CRAN.R-project.org.
  14. Cohen J, Pulliainen J, Ménard CB, Johansen B, Oksanen L, Luojus K, Ikonen J. 2013. Effect of reindeer grazing on snowmelt, albedo and energy balance based on satellite data analyses. Remote Sens Environ 135:107–17.CrossRefGoogle Scholar
  15. Dalen L, Hofgaard A. 2005. Differential regional treeline dynamics in the Scandes Mountains. Arct Antarct Alp Res 37(3):284–96.CrossRefGoogle Scholar
  16. Danell K, Huss-Danell K. 1985. Feeding by insects and hares on birches earlier affected by moose browsing. Oikos 44(1):75–81.CrossRefGoogle Scholar
  17. Duffey E, Morris MG, Sheail J, Ward LK, Wells DA, Wells TCE. 1974. Grassland ecology and wildlife management. London: Chapman and Hall.Google Scholar
  18. Epstein HE, Beringer J, Gould WA, Lloyd AH, Thompson CD, Chapin FS, Michaelson GJ, Ping CL, Rupp TS, Walker DA. 2004. The nature of spatial transitions in the Arctic. J Biogeogr 31(12):1917–33.CrossRefGoogle Scholar
  19. Fierer N, Strickland SM, Liptzin D, Bradford AM, Cleveland CC. 2009. Global patterns in belowground communities. Ecol Lett 12(11):1238–49.PubMedCrossRefGoogle Scholar
  20. Forbes BC, Kumpula T. 2009. The ecological role and geography of reindeer (Rangifer tarandus) in Northern Eurasia. Geogr Compass 3(4):1356–80.CrossRefGoogle Scholar
  21. Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27(2):233–49.CrossRefGoogle Scholar
  22. Grace J, Berninger F, Nagy L. 2002. Impacts of climate change on the tree line. Ann Bot 90(4):537–44.PubMedCrossRefGoogle Scholar
  23. Grippa M, Kergoat L, Le Toan T, Mognard NM, Delbart N, L’Hermitte J, Vicente-Serrano SM. 2005. The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophys Res Lett 32(21):21412.CrossRefGoogle Scholar
  24. Groisman PY, Karl TR, Knight RW. 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263(5144):198–200.PubMedCrossRefGoogle Scholar
  25. Hämet-Ahti L. 1963. Zonation of the mountain birch forests in northernmost Fennoscandia: Selostus. Annales Botanici Societatis Zoologicæ 4(34):1–360.Google Scholar
  26. Harper KA, Danby RK, De Fields DL, Lewis KP, Trant AJ, Starzomski BM, Savidge R, Hermanutz L. 2011. Tree spatial pattern within the forest-tundra ecotone: a comparison of sites across Canada. Can J For Res 41(3):479–89.CrossRefGoogle Scholar
  27. Harris LD. 1988. Edge effects and conservation of biotic diversity. Conserv Biol 2(4):330–2.CrossRefGoogle Scholar
  28. Hausner VH, Fauchald P, Tveraa T, Pedersen E, Jernsletten JL, Ulvevadet B, Ims RA, Yoccoz NG, Brathen KA. 2011. The ghost of development past: the impact of economic security policies on Saami pastoral ecosystems. Ecol Soc 16(3):4.Google Scholar
  29. Hofgaard A, Lokken JO, Dalen L, Hytteborn H. 2010. Comparing warming and grazing effects on birch growth in an alpine environment - a 10-year experiment. Plant Ecol Divers 3(1):19–27.CrossRefGoogle Scholar
  30. Hofgaard A, Tømmervik H, Rees G, Hanssen F. 2013. Latitudinal forest advance in northernmost Norway since the early 20th century. J Biogeo 40(5):938–49.CrossRefGoogle Scholar
  31. Holtmeier FK, Broll G. 2011. Response of Scots Pine (Pinus sylvestris) to warming climate at its altitudinal limit in northernmost subarctic Finland. Arctic 64(3):269–80.CrossRefGoogle Scholar
  32. Ims RA, Yoccoz NG, Brathen KA, Fauchald P, Tveraa T, Hausner V. 2007. Can reindeer overabundance cause a trophic cascade? Ecosystems 10(4):607–22.CrossRefGoogle Scholar
  33. Jepsen JU, Biuw M, Ims RA, Kapari L, Schott T, Vindstad OPL, Hagen SB. 2013. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16(4):561–75.CrossRefGoogle Scholar
  34. Jepsen JU, Hagen SB, Hogda KA, Ims RA, Karlsen SR, Tommervik H, Yoccoz NG. 2009. Monitoring the spatio-temporal dynamics of geometrid moth outbreaks in birch forest using MODIS-NDVI data. Remote Sens Environ 113(9):1939–47.CrossRefGoogle Scholar
  35. Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. 2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in sub-arctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–64.PubMedCrossRefGoogle Scholar
  36. John M. 1970. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci 109(4):214–20.CrossRefGoogle Scholar
  37. Karlsen SR, Jepsen JU, Odland A, Ims RA, Elvebakk A. 2013. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia 173:859–70.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kaukonen M, Ruotsalainen AL, Wäli PR, Männistö MK, Setälä H, Saravesi K, Huusko K, Markkola A. 2013. Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94(2):267–72.PubMedCrossRefGoogle Scholar
  39. Klein DR. 1990. Variation in quality of caribou and reindeer forage plants associated with season, plant part, and phenology. Rangifer Spec Issue 3:123–30.Google Scholar
  40. Kumpula J, Stark S, Holand O. 2011. Seasonal grazing effects by semi-domesticated reindeer on subarctic mountain birch forests. Polar Biol 34(3):441–53.CrossRefGoogle Scholar
  41. Kumpula J, Tanskanen A, Colpaert A, Anttonen M, Törmänen H, Siitari J, Siitari S. 2008. Pasture survey of northern reindeer herding area in Finland—results from 2005–2008 and changes in the condition of pastures. Loppuraportti: Riista- ja porotutkimuslaitos.Google Scholar
  42. Lantz TC, Gergel SE, Kokelj SV. 2010. Spatial heterogeneity in the Shrub Tundra Ecotone in the Mackenzie Delta Region, Northwest Territories: implications for Arctic environmental change. Ecosystems 13(2):194–204.CrossRefGoogle Scholar
  43. Lloyd A, Fastie C. 2002. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509.CrossRefGoogle Scholar
  44. Loranty MM, Goetz SJ, Beck PSA. 2011. Tundra vegetation effects on pan-Arctic albedo. Environ Res Lett 6(2):024014.CrossRefGoogle Scholar
  45. Lundberg A, Beringer J. Albedo and snowmelt rates across a tundra-to-forest transition. In: Proceedings of the 15 northern research basins international symposium and workshop. Department of Water Resources Engineering, Lund University; 2005. pp. 1–10.Google Scholar
  46. Marsh P, Bartlett P, MacKay M, Pohl S, Lantz T. 2010. Snowmelt energetics at a shrub tundra site in the western Canadian Arctic. Hydrol Process 24(25):3603–20.CrossRefGoogle Scholar
  47. Ménard CB, Essery R, Pomeroy J, Marsh P, Clark DB. 2012. A shrub bending model to calculate the albedo of shrub-tundra. Hydrol Process . doi: 10.1002/hyp.9582.Google Scholar
  48. Moen J, Aune K, Edenius L, Angerbjorn A. 2004. Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9(1):16.Google Scholar
  49. Muga DA. 1986. A commentary on the historical transformation of the Sami communal mode of production. J. Ethnical Stud 14:111–21.Google Scholar
  50. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509.CrossRefGoogle Scholar
  51. Neuvonen S, Ruohomäki K, Bylund H, Kaitaniemi P. 2001. Insect herbivores and herbivory effects on mountain birch forest dynamics. In: Wielgolaski F, Ed. Nordic mountain birch ecosystems. Man and the biosphere series, Vol. 27. New York: Paris and Parthenon Publishing. p 207–22.Google Scholar
  52. Nienhuis PH, Buijse AD, Leuven R, Smits AJM, De Nooij RJW, Samborska EM. 2002. Ecological rehabilitation of the lowland basin of the river Rhine (NW Europe). Hydrobiologia 478(1–3):53–72.CrossRefGoogle Scholar
  53. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2011. R package version 2.0-5. http://CRAN.R-project.org.
  54. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol 15(11):2681–93.CrossRefGoogle Scholar
  55. Olofsson J, Strengbom J. 2000. Response of galling invertebrates on Salix lanata to reindeer herbivory. Oikos 91(3):493–8.CrossRefGoogle Scholar
  56. Olofsson J, Tommervik H, Callaghan TV. 2012. Vole and lemming activity observed from space. Nat Clim Change 2(12):880–3.CrossRefGoogle Scholar
  57. Pajunen A, Virtanen R, Roininen H. 2008. The effects of reindeer grazing on the composition and species richness of vegetation in forest-tundra ecotone. Polar Biol 31:1233–44.Google Scholar
  58. Pomeroy JW, Bewley DS, Essery RLH, Hedstrom NR, Link T, Granger RJ, Sicart JE, Ellis CR, Janowicz JR. 2006. Shrub tundra snowmelt. Hydrol Process 20(4):923–41.CrossRefGoogle Scholar
  59. R Development Core Team. 2011. R: a language and environment for statistical computing. Vienna: R Development Core Team.Google Scholar
  60. Ravolainen VT, Brathen KA, Ims RA, Yoccoz NG, Henden JA, Killengreen ST. 2011. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl Ecol 12(8):643–53.CrossRefGoogle Scholar
  61. Reindriftsforvaltningen. 2008. Ressursregnskap for reindriftsnæringen. Reindriftsforvaltningen.Google Scholar
  62. Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B. 2012. Generalized Linear Mixed Models using AD Model Builder. R package version 0.7.3. http://CRAN.R-project.org.
  63. Skjenneberg S, Slagsvold L. 1968. Reindriften og dens naturgrunnlag. Oslo: Universitetsforlaget.Google Scholar
  64. Skogland T. 1994. Villrein: fra urinnvåner til miljøbarometer. Oslo: Teknologisk Forlag.Google Scholar
  65. Sonesson M, Osborne C, Sandberg G. 1994. Epiphytic lichens as indicators of snow depth. Arct Alp Res 26(2):159–65.CrossRefGoogle Scholar
  66. Speed JDM, Austrheim G, Hester AJ, Mysterud A. 2010. Experimental evidence for herbivore limitation of the treeline. Ecology 91(11):3414–20.PubMedCrossRefGoogle Scholar
  67. Stark S, Julkunen-Tiitto R, Kumpula J. 2007. Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling. Oecologia 151(3):486–98.PubMedCrossRefGoogle Scholar
  68. Sturm M, Douglas T, Racine C, Liston GE. 2005a. Changing snow and shrub conditions affect albedo with global implications. J Geophys Res 110(G1):G01004.Google Scholar
  69. Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE. 2005b. Winter biological processes could help convert Arctic Tundra to shrubland. Bioscience 55(1):17–26.CrossRefGoogle Scholar
  70. Takala T, Tahvanainen T, Kouki J. 2012. Can re-establishment of cattle grazing restore bryophyte diversity in abandoned mesic semi-natural grasslands? Biodivers Conserv 21(4):981–92.CrossRefGoogle Scholar
  71. Tape K, Sturm M, Racine C. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702.CrossRefGoogle Scholar
  72. Tenow O, Bylund H. 1989. A survey of winter cold in the mountain birch/Epirrita autumnata system. Memoranda Societatis Pro Fauna Et Flora Fennica 65:67–72.Google Scholar
  73. Tømmervik H, Johansen B, Tombre I, Thannheiser D, Hogda KA, Gaare E, Wielgolaski FE. 2004. Vegetation changes in the Nordic mountain birch forest: the influence of grazing and climate change. Arct Antarct Alp Res 36(3):323–32.CrossRefGoogle Scholar
  74. Vorren Ø. 1946. Reindrift og nomadisme i Varangertraktene. Tromsø Museums Årshefter 69(2):145.Google Scholar
  75. Vuojala-Magga T, Turunen M, Ryyppo T, Tennberg M. 2011. Resonance strategies of Sami reindeer herders in northernmost Finland during climatically extreme years. Arctic 64(2):227–41.CrossRefGoogle Scholar
  76. Van der Wal R. 2006. Do herbivores cause habitat degradation or vegetation state transition? Evidence from the tundra. Oikos 114(1):177–86.CrossRefGoogle Scholar
  77. White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS ONE 7(6):e38204.PubMedCentralPubMedCrossRefGoogle Scholar
  78. WMO. 2006. Systematic observation requirements for satellite-based products for climate. Geneva: World Meteorological Organization/Global Climate Observing System.Google Scholar
  79. Zeileis A, Kleiber C, Jackman S. 2008. Regression models for count data in R. J Stat Softw 27(8):1–25.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Martin Biuw
    • 1
  • Jane U. Jepsen
    • 1
  • Juval Cohen
    • 2
  • Saija H. Ahonen
    • 3
  • Mysore Tejesvi
    • 3
  • Sami Aikio
    • 3
  • Piippa R. Wäli
    • 3
    • 4
  • Ole Petter L. Vindstad
    • 5
  • Annamari Markkola
    • 3
  • Pekka Niemelä
    • 6
    • 7
  • Rolf A. Ims
    • 5
  1. 1.Norwegian Institute for Nature Research – NINATromsöNorway
  2. 2.Finnish Meteorological InstituteHelsinkiFinland
  3. 3.Department of BiologyUniversity of OuluOuluFinland
  4. 4.Kolari UnitFinnish Forest Research InstituteKolariFinland
  5. 5.Department of Arctic and Marine BiologyUniversity of TromsøTromsöNorway
  6. 6.Department of BiologyUniversity of TurkuTurkuFinland
  7. 7.Kevo Subarctic Research IntituteUniversity of TurkuTurkuFinland

Personalised recommendations