Skip to main content

The Role of Nitrogen Deposition in Widespread Plant Community Change Across Semi-natural Habitats

Abstract

Experimental studies have shown that deposition of reactive nitrogen is an important driver of plant community change, however, most of these experiments are of short duration with unrealistic treatments, and conducted in regions with elevated ambient deposition. Studies of spatial gradients of pollution can complement experimental data and indicate whether the potential impacts demonstrated by experiments are actually occurring in the ‘real world’. However, targeted surveys exist for only a very few habitats and are not readily comparable. In a coordinated campaign, we determined the species richness and plant community composition of five widespread, semi-natural habitats across Great Britain in sites stratified along gradients of climate and pollution, and related these ecological parameters to major drivers of biodiversity, including climate, pollution deposition, and local edaphic factors. In every habitat, we found reduced species richness and changed species composition associated with higher nitrogen deposition, with remarkable consistency in relative species loss across ecosystem types. Whereas the diversity of mosses, lichens, forbs, and graminoids declines with N deposition in different habitats, the cover of graminoids generally increases. Considered alongside previous experimental studies and survey work, our results provide a compelling argument that nitrogen deposition is a widespread and pervasive threat to terrestrial ecosystems.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Aerts R, Berendse F, De Caluwe H, Schmitz M. 1990. Competition in heathland along an experimental gradient of nutrient availability. Oikos 57:310–8.

    Article  Google Scholar 

  2. Blodau C. 2002. Carbon cycling in peatlands: a review of processes and controls. Environ Rev 10:111–34.

    CAS  Article  Google Scholar 

  3. Blois JL et al. 2013. Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci 110(23):9374–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59.

    CAS  PubMed  Article  Google Scholar 

  5. Bowman WD, Cleveland CC, Halada L, Hresko J, Baron JS. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–70.

    CAS  Article  Google Scholar 

  6. Bubier JL, Moore TR, Bledzki LA. 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Change Biol 13:1168–86.

    Article  Google Scholar 

  7. Buyantuyev A et al. 2012. A space-for-time (SFT) substitution approach to studying historical phenological changes in urban environment. PLoS One 7(12):e51260.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Caporn SJM, Song W, Read DJ, Lee JA. 1995. The effects of repeated N fertilisation on mycorrhizal infection in heather. New Phytol 129:605–9.

    Article  Google Scholar 

  9. Carroll JA, Caporn SJM, Cawley L, Read DJ, Lee JA. 1999. The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytol 141:423–31.

    Article  Google Scholar 

  10. Clark CM, Tilman D. 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–15.

    CAS  PubMed  Article  Google Scholar 

  11. Cunha A, Power SA, Ashmore MR, Green PRS, Haworth BJ, Bobbink R. 2002. Whole ecosystem nitrogen manipulation: an updated review. JNCC: 126.

  12. Daniels SM, Evans MG, Agnew CT, Allott TEH. 2008. Sulphur leaching from headwater catchments in an eroded peatland, South Pennines, UK. Sci Total Environ 407:481–96.

    CAS  PubMed  Article  Google Scholar 

  13. Dise N, Ashmore M, Belyazid S, Bleeker A, Bobbink R, De Vries W, Erisman JW, Spranger T, Stevens CJ, Van den Berg LJL. 2011. Nitrogen as a threat to European terrestrial biodiversity. In: Sutton M, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsman H, Grizzetti B, Eds. The European Nitrogen Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  14. Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M. 2010. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16:344–57.

    Article  Google Scholar 

  15. Elkington T, Dayton N, Jackson DL, Strachan IM. 2001. National Vegetation Classification: field guide to mires and heaths. Peterborough: Joint Nature Conservation Committee.

  16. Emmett BA, Boxman D, Bredemeier M, Gundersen P, Kjønaas OJ, Moldan F, Schleppi P, Tietema A, Wright RF. 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX Ecosystem-Scale Experiments. Ecosystems 1(4):352–60.

  17. Erisman JW, van Grinsven H, Grizzetti B, Bouraoui F, Powlson D, Sutton MA, Bleeker A, Reis S. 2011. The European nitrogen problem in a global perspective. In: Sutton M, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsman H, Grizzetti B, Eds. The European Nitrogen Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  18. European Nature Information System, European Environment agency. 2011.

  19. Evans CD, Chadwick T, Norris D, Rowe EC, Heaton THE, Brown P, Battarbee RW. 2014. Persistent surface water acidification in an organic soil-dominated upland region subject to high atmospheric deposition: The North York Moors, UK. Ecol Ind 37:304–16.

    CAS  Article  Google Scholar 

  20. Fowler D, Smith R, Muller J, Cape JN, Sutton M, Erisman JW, Fagerli H. 2007. Long term trends in sulphur and nitrogen deposition in Europe and the cause of nonlinearities. In: Brimblecombe P, Hara H, Houle D, Novak M, Eds. Acid rain: deposition to recovery. Springer: Dordrecht.

    Google Scholar 

  21. Fukami T, Wardle DA. 2005. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc R Soc B 272(1577):2105–15.

    PubMed Central  PubMed  Article  Google Scholar 

  22. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitizinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226.

    CAS  Article  Google Scholar 

  23. Guerrieri R, Mencuccini M, Sheppard LJ, Saurer M, Perks M, Levy P, Grace J, Sutton MA, Borghetti M. 2011. The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. Glob Change Biol 17:1946–62.

    Article  Google Scholar 

  24. Heil GW, Diemont WH. 1983. Raised nutrient levels change heathland into grassland. Vegetatio 53:113–20.

    Article  Google Scholar 

  25. Hill MO, Gauch HG. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58.

    Article  Google Scholar 

  26. Jones L, Provins A, Harper-Simmonds L, Holland M, Mills G, Hayes F, Emmett BA, Hall J, Sheppard LJ, Smith R, Sutton M, Hicks K, Ashmore M, Haines-Young R. 2014. A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst Services 7:76–88.

  27. Jones MLM, Wallace HL, Norris D, Brittain SA, Haria S, Jones RE, Rhind PM, Reynolds BR, Emmett BA. 2004. Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biol 6:598–605.

    CAS  PubMed  Article  Google Scholar 

  28. Lee JA. 1998. Unintentional experiments with terrestrial ecosystems: ecological effects of sulphur and nitrogen pollutants. J Ecol 86:1–12.

    CAS  Article  Google Scholar 

  29. Leps J, Smilauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press. 260 pp.

    Book  Google Scholar 

  30. Limpens J, Berendse F, Klees H. 2003. N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–47.

    Article  Google Scholar 

  31. Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ. 2010. Nitrogen deposition causes widespread loss of species richness in British habitats. Glob Change Biol 16:671–9.

    Article  Google Scholar 

  32. Moore T, Blodau C, Turunen J, Roulet N, Richard PJH. 2005. Patterns of nitrogen and sulfur accumulation and retention in ombrotrophic bogs, eastern Canada. Glob Change Biol 11:356–67.

    Article  Google Scholar 

  33. Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmorek MR, Power SA. 2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Change Biol 18:1197–215.

    Article  Google Scholar 

  34. Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Phoenix GK, Lee JA, Emmett BA, Sparks T. 2007. Impacts of burning and increased nitrogen deposition on nitrogen pools and leaching in an upland moor. J Ecol 95:1195–207.

    CAS  Article  Google Scholar 

  35. Power SA, Green ER, Barker CG, Bell NB, Ashmore MR. 2006. Ecosystem recovery: heathland response to a reduction in nitrogen deposition. Glob Change Biol 12:1241–52.

    Article  Google Scholar 

  36. Price EAC. 2003. Lowland Grassland and Heathland Habitats. London: Routledge.

  37. R Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.

  38. Remke E, Brouwer E, Kooijman A, Blindow I, Roelofs JGM. 2009. Low atmospheric nitrogen enrichment loads leads to grass encroachment in coastal dunes, but only on acid soils. Ecosystems 12:1173–88.

    CAS  Article  Google Scholar 

  39. RoTAP. 2012. Review of transboundary air pollution: acidification, eutrophication, ground level ozone and heavy metals in the UK. Contract Report to the Department for Environment, Food and Rural Affairs. Centre for Ecology & Hydrology.

  40. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287(5459):1770–4.

    CAS  PubMed  Article  Google Scholar 

  41. Sevink S. 1991. Soil development in the coastal dunes and its relation to climate. Landscape Ecol 6:49–56.

    Article  Google Scholar 

  42. Sheppard LJ, Leith ID, Crossley A, Van Dijk N, Fowler D, Sutton MA, Woods C. 2008. Stress responses of Calluna vulgaris to reduced and oxidised N applied under ‘real world conditions’. Environ Pollut 154(3):404–13.

  43. Sheppard LJ, Leith ID, Mizunuma T, Cape JN, Crossley A, Leeson S, Sutton MA, Van Dijk N, Fowler D. 2011. Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. Glob Change Biol 17:3589–607.

    Article  Google Scholar 

  44. Smith SJ, Pitcher H, Wigley TML. 2001. Global and regional anthropogenic sulfur dioxide emissions. Glob Planet Change 29:99–119.

    Article  Google Scholar 

  45. Southon GE, Field C, Caporn S, Britton A, Power SA. 2013. Nitrogen deposition reduces plant diversity and alters ecosystem functioning: field-scale evidence from a nationwide survey of UK heathlands. PLoS One 8(4):e59031.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Stern DI. 2005. Global sulfur emissions from 1850 to 2000. Chemosphere 58:163–75.

    CAS  PubMed  Article  Google Scholar 

  47. Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–9.

    CAS  PubMed  Article  Google Scholar 

  48. Stevens CJ, Dise NB, Gowing DJG, Mountford JO. 2006. Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob Change Biol 12:1823–33.

    Article  Google Scholar 

  49. Stevens CJ, Dise NB, Gowing DJG. 2009. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environ Pollut 157:313–19.

    CAS  PubMed  Article  Google Scholar 

  50. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing D, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB. 2010. Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–5.

    CAS  PubMed  Article  Google Scholar 

  51. Stevens C, Duprè C, Dorland E, Gaudnik C, Bleeker A, Alard D, Dise N, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad P, Muller S, Diekmann M. 2011. Changes in species composition of European acid grasslands observed along an international gradient of nitrogen deposition. J Veg Sci 22(2):207–15.

    Article  Google Scholar 

  52. ter Braak CJF, Smilauer P. 2004. Canoco Software for Windows 4.53. Biometris Plant Research International, Wageningen, The Netherlands.

  53. Tooke F, Battey NH. 2010. Temperate flowering phenology. J Exp Bot 61(11):2853–62.

    CAS  PubMed  Article  Google Scholar 

  54. Van den Berg LJL, Vergeer P, Rich TCG, Smart SM, Guest DAN, Ashmore MR. 2011. Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Glob Change Biol 17:1871–83.

    Article  Google Scholar 

Download references

Acknowledgments

The survey work and analysis were funded as part of the DEFRA/UKREATE umbrella project. RJP, NBD and SJMC were partially supported by the UK Natural Environment Research Council (NERC) through the European Union FP6 BiodivERsA (ERA-NET) project PEATBOG. The authors wish to thank Jane Hall and Ron Smith of the Centre of Ecology and Hydrology for provision of gridded pollutant data and the UK Met Office for gridded climate data (see below). Finally, the authors are grateful for the large number of people that helped out with the field surveys and the laboratory analysis associated with the project, and the numerous land owners, site managers, rangers and wardens for access permissions during the survey. © Crown Copyright 2009. The UK Climate Projections data (UKCP09) have been made available by the Department for Environment, Food and Rural Affairs (DEFRA) and Department for Energy and Climate Change (DECC) under licence from the Met Office, Newcastle University, University of East Anglia and Proudman Oceanographic Laboratory.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris D. Field.

Additional information

Author Contributions

Wrote paper: CDF, NBD, RJP, SJMC; Commented on paper: CJS, GKP, IDL, NBD, RJP, LJ, LJS, RCH, SAP, SJMC; Field data collection: AJB, CDF, CJS, GES, GKP, IDL, LJ, LJS, RCH, SJMC, SL; Data analysis: CDF, RJP; Lab. Analysis: CDF; GES, SH, SL; Study design and conception: All; BAE and SJMC led the Terrestrial Umbrella Programme and Survey Work Package respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Field, C.D., Dise, N.B., Payne, R.J. et al. The Role of Nitrogen Deposition in Widespread Plant Community Change Across Semi-natural Habitats. Ecosystems 17, 864–877 (2014). https://doi.org/10.1007/s10021-014-9765-5

Download citation

Keywords

  • nitrogen
  • sulphur
  • climate
  • pollution impacts