Skip to main content

Changes in Ecosystem Function Across Sedimentary Gradients in Estuaries

Abstract

The input of terrestrial silt and clay (hereafter mud) into coastal environments can alter sediment grain size distribution affecting the structure and functioning of benthic communities. The relationship between sediment mud content and macrofaunal community structure has been well documented, but not the effects on ecosystem function. In 143 plots from the mid-intertidal sites in 9 estuaries, we measured sediment properties, macrofaunal community composition and fluxes of O2 and NH4 + across the sediment–water interface to derive process-based measures of ecosystem function across the sand–mud gradient. We observed reductions in measures of macrofaunal diversity and decreases in the maximum density of key bioturbating bivalves (Austrovenus stutchburyi and Macomona liliana) with increased mud content. Concurrently, the maximum rates of sediment oxygen consumption (SOC), NH4 + efflux (NH4 +) and biomass standardized gross primary production (GPPChl-a ) also decreased with increasing mud content. Environmental predictors explained 34–39% (P = 0.005–0.01) of the total variation in ecosystem function in distance-based linear models. After partitioning out the effect of mud, A. stutchburyi abundance was positively correlated and explained 25 and 23% (P = 0.0001) of the variation of SOC and NH4 +, respectively. Also, mud content (negatively correlated) and temperature (positively correlated) explained 26% of variability in GPPChl-a (P = 0.0001). Our results highlight the importance of increased mud content and the associated reduction in the abundance of strongly interacting key species on the loss of ecosystem function in intertidal sand flats.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Airoldi L, Beck MW. 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol 45:345–405.

    Google Scholar 

  2. Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. UK: Primer-e Plymouth.

    Google Scholar 

  3. Anderson MJ. 2008. Animal-sediment relationships re-visited: characterising species’ distributions along an environmental gradient using canonical analysis and quantile regression splines. J Exp Mar Biol Ecol 366:16–27.

    Article  Google Scholar 

  4. Banse K. 1982. Mass-scaled rates of respiration and intrinsic growth in very small invertebrates. Mar Ecol Prog Ser 9:281–97.

    Article  Google Scholar 

  5. Bengtsson J. 1998. Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–9.

    Article  Google Scholar 

  6. Billerbeck MH, Røy H, Bosselmann K, Huettel M. 2007. Benthic photosynthesis in submerged Wadden Sea intertidal flats. Estuar Coast Shelf Sci 71:704–16.

    Article  Google Scholar 

  7. Boudreau BP. 1998. Mean mixed depth of sediments: the wherefore and the why. Limnol Oceanogr 43:524–6.

    Article  Google Scholar 

  8. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89.

    Article  Google Scholar 

  9. Cade BS, Noon BR. 2003. A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–20.

    Article  Google Scholar 

  10. Cloern JE. 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay? Mar Ecol Prog Ser 9:191–202.

    Article  Google Scholar 

  11. Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, Vincx M, Gooday AJ. 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8.

    CAS  PubMed  Article  Google Scholar 

  12. Dayton PK, Tegner MJ, Edwards PB, Riser KL. 1998. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–22.

    Article  Google Scholar 

  13. Doak DF, Estes JA, Halpern BS, Jacob U, Lindberg DR, Lovvorn J, Monson DH, Tinker MT, Williams TM, Wootton JT, Carroll I, Emmerson M, Micheli F, Novak M. 2008. Understanding and predicting ecological dynamics: are major surprises inevitable? Ecology 89:952–61.

    PubMed  Article  Google Scholar 

  14. Ehrenhauss S, Witte U, Janssen F, Huettel M. 2004. Decomposition of diatoms and nutrient dynamics in permeable North Sea sediments. Cont Shelf Res 24:721–37.

    Article  Google Scholar 

  15. Gatehouse JSI. 1971. Sediment analysis. In: Carver E, Ed. Procedures in sedimentology and petrology. New York: Wiley Interscience.

    Google Scholar 

  16. Hewitt JE, Thrush SF, Cummings VJ, Pridmore RD. 1996. Matching patterns with processes: predicting the effect of size and mobility on the spatial distributions of the bivalves Macomona liliana and Austrovenus stutchburyi. Mar Ecol Prog Ser 135:57–67.

    Article  Google Scholar 

  17. Henriksen K, Rasmussen MB, Jensen A. 1983. Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlaying water. Ecol Bull 35:193–205.

    CAS  Google Scholar 

  18. Hiddink GJ, Davies TW, Perkins M, Machairopoulou M, Neill SP. 2009. Context dependency of relationships between biodiversity and ecosystem functioning is different for multiple ecosystem functions. Oikos 118:1892–900.

    Article  Google Scholar 

  19. Jones HFE, Pilditch CA, Bruesewitz DA, Lohrer AM. 2011. Sedimentary environment influences the effect of an infaunal suspension feeding bivalve on estuarine ecosystem function. PLoS One 6:e27065.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Koenker R. 2012. Quantreg: quantile regression. R package version 4.54, http://cran.r-project.org/web/packages/quantreg/.

  21. Kraan C, Van Gils JA, Spaans B, Dekinga A, Bijleveld AI, Van Roomen M, Kleefstra R, Piersma T. 2009. Landscape-scale experiment demonstrates that Wadden Sea intertidal flats are used to capacity by molluscivore migrant shorebirds. J Anim Ecol 78:1259–68.

    PubMed  Article  Google Scholar 

  22. Leduc D, Rowden AA, Bowden DA, Probert PK, Pilditch CA, Nodder SD. 2012. Unimodal relationship between biomass and species richness of deep-sea nematodes: implications for the link between productivity and diversity. Mar Ecol Prog Ser 454:53–64.

    Article  Google Scholar 

  23. Lelieveld SD, Pilditch CA, Green MO. 2004. Effects of deposit feeding bivalve (Macomona liliana) density on intertidal sediment stability. N Z J Mar Freshw Res 38:115–28.

    Article  Google Scholar 

  24. Levin LA, Boesch DF, Covich A, Dahm C, Erséus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove PA, Strayer D, Weslawski JM. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–51.

    CAS  Article  Google Scholar 

  25. Lohrer AM, Halliday NJ, Thrush SF, Hewitt JE, Rodil IF. 2010. Ecosystem functioning in a disturbance-recovery context: contribution of macrofauna to primary production and nutrient release on intertidal sandflats. J Exp Mar Biol Ecol 390:6–13.

    Article  Google Scholar 

  26. Lohrer AM, Hewitt JE, Hailes SF, Thrush SF, Ahrens M, Halliday J. 2011. Contamination on sandflats and the decoupling of linked ecological functions. Aust Ecol 36:378–88.

    Article  Google Scholar 

  27. Lohrer AM, Thrush SF, Gibbs MM. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431:1092–5.

    CAS  PubMed  Article  Google Scholar 

  28. Lohrer AM, Townsend M, Rodil IF, Hewitt JE, Thrush SF. 2012. Detecting shifts in ecosystem functioning: the decoupling of fundamental relationships with increased pollutant stress on sandflats. Mar Pollut Bull 64:2761–9.

    CAS  PubMed  Article  Google Scholar 

  29. McCauley DJ, DeSalles PA, Young HS, Dunbar RB, Dirzo R, Mills MM, Micheli F. 2012. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci Rep 2. doi:10.1038/srep00409.

    Google Scholar 

  30. Magni P, Montani S, Takada C, Tsutsumi H. 2000. Temporal scaling and relevance of bivalve nutrient excretion on a tidal flat of the Seto Inland Sea, Japan. Mar Ecol Prog Ser 198:139–55.

    Article  Google Scholar 

  31. MacIntyre H, Geider R, Miller D. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201.

    Article  Google Scholar 

  32. Marinelli RL, Jahnke RA, Craven DB, Nelson JR, Eckman JE. 1998. Sediment nutrient dynamics on the South Atlantic Bight continental shelf. Limnol Oceanogr 43:1305–20.

    Article  Google Scholar 

  33. Marinelli RL, Williams TJ. 2003. Evidence for density-dependent effects of infauna on sediment biogeochemistry and benthic–pelagic coupling in nearshore systems. Estuar Coast Shelf Sci 57:179–92.

    CAS  Article  Google Scholar 

  34. MEA. 2003. Millennium ecosystem assessment: ecosystems and human well-being, Vol. 3Washington D.C.: Island Press.

    Google Scholar 

  35. Mermillod-Blondin F, Rosenberg R, François-Carcaillet F, Norling K, Mauclaire L. 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat Microb Ecol 36:271–84.

    Article  Google Scholar 

  36. Mook DH, Hoskin CM. 1982. Organic determinations by ignition: caution advised. Estuar Coast Shelf Sci 15:697–9.

    CAS  Article  Google Scholar 

  37. Morris AW, Howarth MJ. 1998. Bed stress induced sediment resuspension (SERE 88/89). Cont Shelf Res 18:1203–13.

    Article  Google Scholar 

  38. Needham H, Pilditch C, Lohrer A, Thrush S. 2011. Context-specific bioturbation mediates changes to ecosystem functioning. Ecosystems 14:1096–109.

    CAS  Article  Google Scholar 

  39. Newell RIE. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. J Shellfish Res 23:51–61.

    Google Scholar 

  40. Pickett STA. 1989. Space-for-time substitution as an alternative to long-term studies. In: Likens GE, Ed. Long term studies in ecology: approaches and alternatives. New York: Springer-Verlag. p 110–35.

    Chapter  Google Scholar 

  41. Rodil IF, Lohrer AM, Chiaroni LD, Hewitt JE, Thrush SF. 2011. Disturbance of sandflats by thin terrigenous sediment deposits: consequences for primary production and nutrient cycling. Ecol Appl 21:416–26.

    PubMed  Article  Google Scholar 

  42. Sandwell DR, Pilditch CA, Lohrer AM. 2009. Density dependent effects of an infaunal suspension-feeding bivalve (Austrovenus stutchburyi) on sandflat nutrient fluxes and microphytobenthic productivity. J Exp Mar Biol Ecol 373:16–25.

    Article  Google Scholar 

  43. Sartory DP. 1982. Spectrophotometric analysis of chlorophyll a in freshwater phytoplankton. Pretoria: Hydrological Research Institute, Department of Environmental Affairs.

    Google Scholar 

  44. Thomson JD, Weiblen G, Thomson BA, Alfaro S, Legendre P. 1996. Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology 77:1698–715.

    Article  Google Scholar 

  45. Thornton DCO, Underwood GJC, Nedwell DB. 1999. Effect of illumination and emersion period on the exchange of ammonium across the estuarine sediment-water interface. Mar Ecol Prog Ser 184:11–20.

    CAS  Article  Google Scholar 

  46. Thrush SF, Hewitt JE, Lohrer AM. 2012. Interaction networks in coastal soft-sediments highlight the potential for change in ecological resilience. Ecol Appl 22:1213–23.

    CAS  PubMed  Article  Google Scholar 

  47. Thrush SF, Hewitt JE, Hickey CW, Kelly S. 2008. Multiple stressor effects identified from species abundance distributions: Interactions between urban contaminants and species habitat relationships. J Exp Mar Biol Ecol 366:160–8.

    Article  Google Scholar 

  48. Thrush SF, Hewitt JE, Gibbs M, Lundquist C, Norkko A. 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9:1029–40.

    Article  Google Scholar 

  49. Thrush SF, Hewitt JE, Cummings VJ, Ellis JI, Hatton C, Lohrer AM, Norkko A. 2004. Muddy waters: elevating sediment input to coastal and estuarine habitats. Front Ecol Environ 2:299–306.

    Article  Google Scholar 

  50. Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI. 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar Ecol Prog Ser 263:101–12.

    Article  Google Scholar 

  51. Thrush SF, Pridmore RD, Hewitt JE, Cummings VJ. 1994. The importance of predators on a sand-flat: interplay between seasonal changes in prey densities and predator effects. Mar Ecol Prog Ser 107:211–22.

    Article  Google Scholar 

  52. Thrush SF, Hewitt JE, Pridmore RD. 1989. Patterns in the spatial arrangement of polychaetes and bivalves in intertidal sandflats. Mar Biol 102:529–36.

    Article  Google Scholar 

  53. van Rijn LC. 1993. Principles of sediment transport in rivers, estuaries and coastal seas. Amsterdam: Aqua Publications.

    Google Scholar 

  54. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–50.

    Google Scholar 

  55. Welsh DT. 2003. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem Ecol 19:321–42.

    CAS  Article  Google Scholar 

  56. Woodin SA, Wethey DS, Volkenborn N. 2010. Infaunal hydraulic ecosystem engineers: cast of characters and impacts. Integr Comp Biol 50:176–87.

    PubMed  Article  Google Scholar 

  57. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–90.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Dudley Bell, Clarisse Niemand, Rebecca Gladstone-Gallagher, Dorothea Kohlmeier and numerous NIWA staff for their help with the fieldwork and Barry Greenfield, Sarah Hailes, Bruce Patty and Kerry Allen who assisted with sample processing. We also thank Hannah Jones, Hazel Needham, Konrad Gorski and two anonymous reviewers for their useful comments. This research was funded by NIWA under Coasts and Oceans Research Programme 3 (2012/13 SCI) and progenitor programs, and a NIWA PhD scholarship to DRP (Foundation for Research, Science and Technology (FRST) Project No. C01X0501).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Pratt.

Additional information

Author contributions

Daniel R. Pratt, Andrew M. Lohrer, Conrad A. Pilditch and Simon F. Thrush conceived the study; Daniel R. Pratt, Andrew M. Lohrer, Conrad A. Pilditch performed the research and analyzed the data; Daniel R. Pratt, Andrew M. Lohrer, Conrad A. Pilditch and Simon F. Thrush wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pratt, D.R., Lohrer, A.M., Pilditch, C.A. et al. Changes in Ecosystem Function Across Sedimentary Gradients in Estuaries. Ecosystems 17, 182–194 (2014). https://doi.org/10.1007/s10021-013-9716-6

Download citation

Keywords

  • Bivalves
  • Sand flats
  • Key species
  • Nutrients fluxes
  • Primary production
  • Mud content
  • Factor ceiling
  • New Zealand