, Volume 17, Issue 2, pp 344–359 | Cite as

Animating the Carbon Cycle

  • Oswald J. SchmitzEmail author
  • Peter A. Raymond
  • James A. Estes
  • Werner A. Kurz
  • Gordon W. Holtgrieve
  • Mark E. Ritchie
  • Daniel E. Schindler
  • Amanda C. Spivak
  • Rod W. Wilson
  • Mark A. Bradford
  • Villy Christensen
  • Linda Deegan
  • Victor Smetacek
  • Michael J. Vanni
  • Christopher C. Wilmers


Understanding the biogeochemical processes regulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully “animating” the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quantification of their effects on carbon storage and exchange among terrestrial and aquatic reservoirs and the atmosphere. To encourage more hypothesis-driven experimental research that quantifies animal effects we discuss the mechanisms by which animals may affect carbon exchanges and storage within and among ecosystems and the atmosphere. We illustrate how those mechanisms lead to multiplier effects whose magnitudes may rival those of more traditional carbon storage and exchange rate estimates currently used in the carbon budget. Many animal species are already directly managed. Thus improved quantitative understanding of their influence on carbon budgets may create opportunity for management and policy to identify and implement new options for mitigating CO2 release at regional scales.

Key words:

animal mediation of carbon cycling animal multiplier effects animal management for carbon storage biogeochemical cycling regional carbon budgets 



This paper resulted from the Yale Climate and Energy Institute (YCEI) 2012 conference and workshop “Managing species for regulating the carbon cycle”. We thank YCEI for its sponsorship and funding. Regular and OPUS grants from US National Science Foundation (DEB 0543398, DEB 0816504, DEB 0842230), grants from the UK Natural Environmental Research (NE/H010041/1) Council and UK Biotechnology and Biological Sciences Research Council (BB/F009364/1), and funding from the Nippon Foundation - UBC Nereus Program, also supported our work.

Supplementary material

10021_2013_9715_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
10021_2013_9715_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 23 kb)


  1. Atkinson A, Siegel V, Pakhomov E, Rothery P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–3.PubMedCrossRefGoogle Scholar
  2. Atwood TB, Hammill E, Greig HS, Kratina P, Shurin JB, Srivastava DS, Richardson JS. 2013. Predator-induced reduction of freshwater carbon dioxide emissions. Nature Geosci 6:191–4.CrossRefGoogle Scholar
  3. Ballantyne AP, Alden CB, Miller JB, Tans P, White JWC. 2012. Increase in observe net carbon dioxide uptake by land and oceans over the past 50 years. Nature 488:70–2.PubMedCrossRefGoogle Scholar
  4. Beaugrand G, Edwards M, Legendre L. 2010. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Natl Acad Sci USA 107:10120–4.PubMedCrossRefGoogle Scholar
  5. Broecker WS, Takahashi T, Simpson HJ, Peng T-H. 1979. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–18.PubMedCrossRefGoogle Scholar
  6. Brodie JF, Gibbs HK. 2009. Bushmeat hunting as climate threat. Science 326:364–5.PubMedCrossRefGoogle Scholar
  7. Canadian Forest Service. 2005. State of Canada’s forests 2004–2005: Boreal forest. Government of Canada Publications.Google Scholar
  8. Conant RT, Ryan MG, Ågren G, Birge H, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MU, Lavallee JM, Leifel J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JÅM, Bradford MA. 2011. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Global Change Biol 17:3392–404.CrossRefGoogle Scholar
  9. Cooper CA, Whittamore JM, Wilson RW. 2010. Ca(2+)-driven intestinal HCO(3)(−) secretion and CaCO(3) precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport. Am J Physiol 298:R870–6.CrossRefGoogle Scholar
  10. Crowther TW, Boddy L, Jones TH. 2012. Functional and ecological consequences of saprophytic fungal-grazer interactions. ISME J 6:1992–2001.PubMedCrossRefGoogle Scholar
  11. de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, BjØrnlund L, JØrgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T., Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten W, Wolters V, Bardgett RD. 2013. Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1305198110.
  12. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D. 2011. Global atmospheric methane: budget changes and dangers. Phil T R Soc A 369:2058–72.CrossRefGoogle Scholar
  13. Doughty CE, Wolf A, Malhi Y. 2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geosci. doi: 10.1038/ngeo1895.Google Scholar
  14. Dulal HB, Shah KU, Sapkota U. 2012. Reducing emissions from deforestation and forest degradation (REDD) projects: lessons for future policy design and implementation. Int J Sust Dev World 19:116–29.CrossRefGoogle Scholar
  15. Dymond CC, Nielsen ET, Stinson G, Porter K, MacLean DA, Gray DR, Campagna M, Kurz WA. 2010. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 13:917–31.CrossRefGoogle Scholar
  16. Essington T. 2010. Trophic cascades in open ocean ecosystems. In: Terborgh J, Estes JA, Eds. Trophic cascades. Washington DC: Island Press. p 91–105.Google Scholar
  17. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essignton TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA. 2011. Trophic downgrading of planet Earth. Science 333:301–6.PubMedCrossRefGoogle Scholar
  18. Falkowski P, Scholes RJ, Boyle K, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore BIII, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: a test of our knowledge of Earth as system. Science 290:291–6.PubMedCrossRefGoogle Scholar
  19. Hawlena D, Schmitz OJ. 2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc Nat Acad Sci USA 107:15503–7.PubMedCrossRefGoogle Scholar
  20. Hawlena D, Strickland MS, Bradford MA, Schmitz OJ. 2012. Fear of predation slows litter decomposition. Science 336:1434–7.PubMedCrossRefGoogle Scholar
  21. Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EH, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J. 2012. Effects of biotic disturbance on forest carbon cycling in the United States and Canada. Global Change Biol 18:7–34.CrossRefGoogle Scholar
  22. Holdo RM, Sinclair ARE, Dobson AP, Metger KL, Bolker BM, Ritchie ME, Holt RD. 2009. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol 7:e1000210.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Holtgrieve GW, Schindler DE. 2011. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams. Ecology 92:373–85.PubMedCrossRefGoogle Scholar
  24. Houghton RA. 2007. Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–47.CrossRefGoogle Scholar
  25. Houghton RA, Hall F, Goetz SJ. 2009. Importance of biomass in the global carbon cycle. J Geophys Res 114: G00E03.Google Scholar
  26. Jobbágy EG, Jackson RB. 2000. The vertical distribution of organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–36.CrossRefGoogle Scholar
  27. Kanwisher JW, Ridgway SH. 1983. The physiological ecology of whales and porpoises. Sci Am 248:102–8.CrossRefGoogle Scholar
  28. Kasischke ES, Christensen NL Jr, Stocks BJ. 1995. Fire, global warming and carbon balance of boreal forests. Ecol Appl 5:437–51.CrossRefGoogle Scholar
  29. Knoll LB, Vanni MJ, Renwick WH, Dittman EK, Gephart JA. 2013. Temperate reservoirs are large carbon sinks and small CO2 sources: results from high-resolution carbon budgets. Global Biogeochem Cycles 27:52–64.CrossRefGoogle Scholar
  30. Körner C. 2003. Slow in, rapid out-carbon flux studies and Kyoto targets. Science 300:1242–3.PubMedCrossRefGoogle Scholar
  31. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. 2008a. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–90.PubMedCrossRefGoogle Scholar
  32. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET. 2008b. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Nat Acad Sci USA 105:1551–5.PubMedCrossRefGoogle Scholar
  33. Lebrato M, Iglesias-Rodriguez D, Feely RA, Greeley D, Jones DOB, Suarez-Bosche N, Lampitt RS, Cartes JE, Green DRH, Baker B. 2010. Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments. Ecol Monogr 80:441–67.CrossRefGoogle Scholar
  34. Lavery TJ, Roundnew B, Gill P, Seymour J. Seuront L., Johnson G, Mitchell JG, Smetacek V. 2010. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc Royal Soc London (B) 277:3527–31.Google Scholar
  35. LeQuéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingsten P, Gurney K, Houghton RA, Levy PA, Lomas MR, Majkut J, Metzel N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geosci 2:831–6.CrossRefGoogle Scholar
  36. Lubbers IM, van Groenigen KJ, Fonte SJ, Six J, Brussaard L, van Groenigen JW. 2013. Greenhouse-gas emissions from soils increased by earthworms. Nat Clim Change 3:187–94.Google Scholar
  37. Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lamge H, Snevirante SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnini L, Richardson AD. 2010. Global convergence in the temperature sensitivity of respiration at the ecosystem level. Science 329:838–40.PubMedCrossRefGoogle Scholar
  38. McLaren BE, Peterson RO. 1994. Wolves, moose, and tree rings on Isle Royale. Science 266:1555–8.PubMedCrossRefGoogle Scholar
  39. Medvigy D, Clark KL, Skowronski NS, Schäfer KVR. 2012. Simulated impacts of insect defoliation on forest carbon dynamics. Environ Res Lett 7: article 045703.Google Scholar
  40. Naiman RJ, Bilby RE, Schindler DE, Helfield JM. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417.CrossRefGoogle Scholar
  41. Nicol S, Bowie A, Jarman S, Lannuzel D, Meiners KM, Van Der Merve P. 2010. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish 11:203–9.CrossRefGoogle Scholar
  42. Pacala S, Sokolow R. 2004. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–72.PubMedCrossRefGoogle Scholar
  43. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautianen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.PubMedCrossRefGoogle Scholar
  44. Pastor J, Naiman RT, Dewey B, McInnes P. 1988. Moose, microbes and the boreal forest. BioScience 38:770–7.CrossRefGoogle Scholar
  45. Perry CT, Salter MA, Harborne AR, Crowley SF, Jelks HL, Wilson RW. 2011. Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proc Natl Acad Sci USA 108:3865–9.PubMedCrossRefGoogle Scholar
  46. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JP, Raupach MR. 2012. CORRESPONDENCE: Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change 2:2–4.CrossRefGoogle Scholar
  47. Post JR, Sullivan M, Cox S, Lester NP, Walters CJ, Parkinson EA, Paul AJ, Jackson L, Shuter BJ. 2002. Canada’s recreational fisheries: the invisible collapse? Fisheries 27:6–17.CrossRefGoogle Scholar
  48. Post WM, Peng T-H, Emanuel WR, King AW, Dale VH, DeAngelis DL. 1990. The global carbon cycle. Am Sci 78:310–26.Google Scholar
  49. Revell R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric CO2 during the past decades. Tellus 9:18–27.CrossRefGoogle Scholar
  50. Ripple WJ, Rooney TP, Beschta RL. 2010. Large predators, deer and trophic cascades in boreal and temperate ecosystems. In: Terborgh J, Estes JA, Eds. Trophic cascades. Washington DC: Island Press. p 141–62.Google Scholar
  51. Ritchie ME, Eby SL, Mayemba EP. 2013. Environmental contexts of grazing impacts on soil organic carbon in the Serengeti. PLoS (in review).Google Scholar
  52. Robison BH, Reisenbichler KR, Sherlock RE. 2005. Giant larvacean houses: rapid carbon transport to the deep sea floor. Science 308:1609–11.PubMedCrossRefGoogle Scholar
  53. Roman J, McCarthy JJ. 2010. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5:e13255.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Sabine CL, Feeley RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Onon T, Rios AF. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71.PubMedCrossRefGoogle Scholar
  55. Sarmiento JL, Gruber N. 2002. Sinks for anthropogenic carbon. Phys Today 55:30–6.CrossRefGoogle Scholar
  56. Schindler DE, Carpenter SR, Cole JJ, Kitchell JF, Pace ML. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277:248–51.CrossRefGoogle Scholar
  57. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehman J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.PubMedCrossRefGoogle Scholar
  58. Schmitz OJ, Post E, Burns CE, Johnston KM. 2003. Ecosystem responses to global climate change: moving beyond color-mapping. BioScience 53:1199–205.CrossRefGoogle Scholar
  59. Schmitz OJ, Hawlena D, Trussell GR. 2010. Predator control of ecosystem nutrient dynamics. Ecol Lett 13:1199–209.PubMedCrossRefGoogle Scholar
  60. Schuur E, Abbott B. 2011. High risk of permafrost thaw. Nature 480:32–3.PubMedCrossRefGoogle Scholar
  61. Smetacek V, Assmy P, Henjes J. 2004. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–58.CrossRefGoogle Scholar
  62. Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d’Ovidio F, Arrieta JM, Bathmann U, Bellerby R, Berg GM, Croot P, Gonzalez S, Henjes J, Herndl GH, Hoffmann LJ, Leach H, Losch M, Mills MM, Neill C, Peeken I, Röttgers R, Sachs O, Sauter E, Schmidt MM, Schwarz J, Terbrüggen A, Wolf-Gladrow D. 2012. Depp carbon.Google Scholar
  63. Smith VH, Schindler DW. 2009. Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–7.PubMedCrossRefGoogle Scholar
  64. Steneck RS. 2010. Apex predators and trophic cascades in large marine ecosystems: Learning from serendipity. Proc Natl Acad Sci USA 109:7953–4.CrossRefGoogle Scholar
  65. Strickland MS, Hawlena D, Reese A, Bradford MA, Schmitz OJ. 2013. Trophic cascade alters ecosystem carbon exchange. Proc Nat Acad Sci USA in press.Google Scholar
  66. Tanentzap AJ, Coomes DA. 2012. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biol Rev 87:72–95.PubMedCrossRefGoogle Scholar
  67. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2023.Google Scholar
  68. Thomas CD, Anderson BJ, Mioilanen A, Eigenbrod F, Heinemeyer A, Quaife T, Roy DB, Gillings S, Armsworth PR, Gaston KJ. 2013. Reconciling biodiversity and carbon conservation. Ecol Lett 16(S1):39–47.Google Scholar
  69. US Environmental Protection Agency. Draft inventory of U.S. greenhouse gas emissions and sinks. (National Service Center for Environmental Publications, 2013)
  70. Vanni MJ. 2002. Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–70.CrossRefGoogle Scholar
  71. Vanni MJ, Renwick WH, Bowling AM, Horgan MJ, Christian AD. 2011. Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use. Freshw Biol 56:791–811.CrossRefGoogle Scholar
  72. Venter O, Koh L-P. 2012. Reducing emissions from deforestation and forest degradation (REDD +): game changer or just another quick fix? Ann NY Acad Sci 1249:137–50.PubMedCrossRefGoogle Scholar
  73. Wardle DA, Bellingham PJ, Fukami T, Bonne KI. 2012. Soil-mediated indirect impacts of an invasive predator on plant growth. Biol Lett 8:574–7.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Ware JR, Smith SV, Reaka-Kudla ML. 1992. Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–30.CrossRefGoogle Scholar
  75. Whittamore JM, Cooper CA, Wilson RW. 2010. HCO3 secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Physiol 298:R877–86.Google Scholar
  76. Wilmers CC, Estes JA, Edwards M, Laidre KL, Konar B. 2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis for sea otters and kelp forests. Frontiers Ecol Environ 10:409–15.CrossRefGoogle Scholar
  77. Wilson MA, Carpenter SR. 1999. Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol Appl 9:772–83.Google Scholar
  78. Wilson RW, Millero FJ, Taylor JR, Walsh PJ, Christensen V, Jennings S, Grosell M. 2009. Contribution of fish to the marine inorganic carbon cycle. Science 323:359–62.PubMedCrossRefGoogle Scholar
  79. Woodwell GM, Whitaker RH, Reiners WA, Likens GE, Delwich CC, Botkin DB. 1978. Biota and the world carbon budget. Science 199:141–6.PubMedCrossRefGoogle Scholar
  80. Woosley RJ, Millero FJ, Grosell M. 2012. The solubility of fish-produced high magnesium calcite in seawater. J Geophys Sci 117:C1048.Google Scholar
  81. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotzke HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D. 2009. Rebuilding global fisheries. Science 325:578–85.PubMedCrossRefGoogle Scholar
  82. Zimov SA, Schuur EG, Chapin FSIII. 2006. Permafrost and the global carbon budget. Science 312:1612–13.PubMedCrossRefGoogle Scholar
  83. Zimov NS, Zimov SA, Zimova AE, Zimova GM, Chpryinin VI, Chapin FSIII. 2009. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget. Geophys Res Lett 36:L02502.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Oswald J. Schmitz
    • 1
    Email author
  • Peter A. Raymond
    • 1
  • James A. Estes
    • 2
  • Werner A. Kurz
    • 3
  • Gordon W. Holtgrieve
    • 4
  • Mark E. Ritchie
    • 5
  • Daniel E. Schindler
    • 4
  • Amanda C. Spivak
    • 6
  • Rod W. Wilson
    • 7
  • Mark A. Bradford
    • 1
  • Villy Christensen
    • 8
  • Linda Deegan
    • 9
  • Victor Smetacek
    • 10
  • Michael J. Vanni
    • 11
  • Christopher C. Wilmers
    • 12
  1. 1.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzUSA
  3. 3.Natural Resources CanadaCanadian Forest ServiceVictoriaCanada
  4. 4.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA
  5. 5.Department of BiologySyracuse UniversitySyracuseUSA
  6. 6.Marine Chemistry and Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  7. 7.Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  8. 8.Fisheries Centre, University of British ColumbiaVancouverCanada
  9. 9.The Ecosystems Center Marine Biological LaboratoryWoods HoleUSA
  10. 10.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  11. 11.Department of Biology and Ecology, Evolution and Environmental Biology Graduate ProgramMiami UniversityOxfordUSA
  12. 12.Environmental Studies DepartmentUniversity of CaliforniaSanta CruzUSA

Personalised recommendations