Skip to main content

Interactive Effects of Fire, Rainfall, and Litter Quality on Decomposition in Savannas: Frequent Fire Leads to Contrasting Effects

Abstract

One of the many ecological processes expected to undergo alteration due to global change is the decomposition of organic matter, with little known concerning the effects that changing disturbance regimes may have. Fire, a critical process in many habitats, is expected to become more common. We measured the decomposition rates of four grass species that differed in litter quality, investigating them under different fire regimes across a savanna rainfall gradient in South Africa. We also collected data on the abundance and activity of fungus-growing termites and recorded measurements of temperature and canopy cover. Overall, decomposition rate followed global models, increasing under warmer and wetter conditions. Litter quality was also significant with higher quality grasses decomposing faster; however, this effect was less pronounced than expected. Fire regimes did not have a consistent effect on decomposition rate along the rainfall gradient. In the most arid savanna type examined, fire had no effect, whereas in the intermediate rainfall savanna burning increased decomposition rate under higher levels of fungus-growing termite activity. In the wetter savannas, fire slowed decomposition, possibly through modification of vegetation structure and potential effects on other invertebrates. Our results demonstrate that grass decomposition in African savannas varies significantly along precipitation gradients, with different factors becoming influential in different habitats. Importantly, we demonstrate that fire does not always act to slow decomposition and that it interacts with other factors to influence the process. These findings have important implications for decomposition in the light of global change models that predict wetter climates and a higher frequency of fires for southern African savannas.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Aanen DK, Eggleton P. 2005. Fungus-growing termites originated in African rain forest. Curr Biol 15:851–5.

    PubMed  Article  CAS  Google Scholar 

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–49.

    Article  Google Scholar 

  • Austin AT. 2011. Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–35.

    PubMed  Article  Google Scholar 

  • Austin AT, Vivanco L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–8.

    PubMed  Article  CAS  Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH. 2009. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–12.

    Article  Google Scholar 

  • Bengtsson J, Janion C, Chown SL, Leinaas HP. 2011. Variation in decomposition rates in the Fynbos biome, South Africa: the role of plant species and plant stoichiometry. Oecologia 165:225–35.

    PubMed  Article  Google Scholar 

  • Biggs R, Biggs HC, Dunne TT, Govender N, Potgieter ALF. 2003. Experimental burn plot trial in the Kruger national park: history, experimental design and suggestions for data analysis. Koedoe 46:1–15.

    Article  Google Scholar 

  • Bond WJ, Keeley JE. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–94.

    PubMed  Article  Google Scholar 

  • Bond WJ, Parr CL. 2010. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Conserv 143:2395–404.

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF. 2005. The global distribution of ecosystems in a world without fire. New Phytol 165:525–38.

    PubMed  Article  CAS  Google Scholar 

  • Bowers JA. 2006. Feeding patch selection of African buffalo (Syncerus caffer caffer) in the central region of the Kruger national park. Masters thesis, Tshwane University of Technology.

  • Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL. 2010. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13:765–81.

    Article  CAS  Google Scholar 

  • Brennan KEC, Christie FJ, York A. 2009. Global climate change and litter decomposition: more frequent fire slows decomposition and increases the functional importance of invertebrates. Global Change Biol 15:2958–71.

    Article  Google Scholar 

  • Buis GM, Blair JM, Burkepile DE, Burns CE, Chamberlain AJ, Chapman PL, Collins SL, Fynn RWS, Govender N, Kirkman KP, Smith MD, Knapp AK. 2009. Controls of aboveground net primary production in mesic savanna grasslands: an inter-hemispheric comparison. Ecosystems 12:982–95.

    Article  CAS  Google Scholar 

  • Buitenwerf R, Stevens N, Gosling CM, Anderson TM, Olff H. 2011. Interactions between large herbivores and litter removal by termites across a rainfall gradient in a South African savanna. J Trop Ecol 27:375–82.

    Article  Google Scholar 

  • Cary GJ. 2002. Importance of a changing climate for fire regimes in Australia. In: Bradstock RA, Williams JE, Gill AM, Eds. Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge: Cambridge University Press. p 26–46.

    Google Scholar 

  • Chapin FS, Matson PA, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Collins NM. 1981. The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 51:389–99.

    Article  Google Scholar 

  • Couteaûx M–M, Bottner P, Berg B. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–6.

    Article  Google Scholar 

  • Curry JP. 1998. Factors affecting earthworm abundance in soils. In: Edwards CA, Ed. Earthworm ecology. Boca Raton: CRC Press. p 37–64.

    Google Scholar 

  • Davies AB. 2010. Termite responses to long term burning regimes in southern African savannas: patterns, processes and conservation. Masters thesis, University of Pretoria.

  • Davies AB, Parr CL, van Rensburg BJ. 2010. Termites and fire: current understanding and future research directions for improved savanna conservation. Austral Ecol 35:482–6.

    Article  Google Scholar 

  • Davies AB, Eggleton P, van Rensburg BJ, Parr CL. 2012. The pyrodiversity–biodiversity hypothesis: a test with savanna termite assemblages. J Appl Ecol 49:422–30.

    Article  Google Scholar 

  • Dawes-Gromadzki TZ. 2003. Sampling subterranean termite species diversity and activity in tropical savannas: an assessment of different bait choices. Austral Ecol 18:397–404.

    Google Scholar 

  • Dawes-Gromadzki TZ, Spain A. 2003. Seasonal patterns in the activity and species richness of surface-foraging termites (Isoptera) at paper baits in a tropical Australian savanna. J Trop Ecol 19:449–56.

    Article  Google Scholar 

  • Ellis RP. 1990. Tannin-like substances in grass leaves. Mem Bot Surv S Afr 59:59–77.

    Google Scholar 

  • Flannigan MD, Stocks BJ, Wooton BM. 2000. Climate change and forest fires. Sci Total Environ 262:221–9.

    PubMed  Article  CAS  Google Scholar 

  • Fourie JH, Opperman DPJ, Roberts BR. 1985. Evaluation of the grazing potential of grass species in Tarchonanthus veld of the Northern cape. J Grassl Soc South Afr 4:13–17.

    Article  Google Scholar 

  • Freymann BP, De Visser SN, Olff H. 2010. Spatial and temporal hotspots of termite-driven decomposition in the Serengeti. Ecography 33:443–50.

    Google Scholar 

  • Gallo ME, Porras-Alfaro A, Odenbach KJ, Sinsabaugh RL. 2008. Photoacceleration of plant litter decomposition in an arid environment. Soil Biol Biochem 41:1433–41.

    Article  Google Scholar 

  • Garnsey R. 1994. Seasonal activity and estivation of lumbricid earthworms in the midlands of Tasmania. Soil Res 32:1355–67.

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biol 6:751–65.

    Article  Google Scholar 

  • Goldammer JG, Price C. 1998. Potential impacts of climate change on fire regimes in the tropics based on MAGICC and a GISS CCM-derived lightening model. Clim Change 39:273–96.

    Article  Google Scholar 

  • Hättenschwiler S, Gasser P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–24.

    PubMed  Article  Google Scholar 

  • Hättenschwiler S, Vitousek PM. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–43.

    PubMed  Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218.

    Article  Google Scholar 

  • Henry HAL, Brizgys K, Field CB. 2008. Litter decomposition in a California annual grassland: interactions between photodegradation and litter layer thickness. Ecosystems 11:545–54.

    Article  CAS  Google Scholar 

  • Hernández D, Hobbie S. 2008. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia 158:535–43.

    PubMed  Article  Google Scholar 

  • Holt JA, Coventry RJ. 1990. Nutrient cycling in Australian savannas. J Biogeogr 17:427–32.

    Article  Google Scholar 

  • Hughes L. 2003. Climate change and Australia: trends, projections and impacts. Austral Ecol 28:423–43.

    Article  Google Scholar 

  • Kay AD, Mankowski J, Hobbie SE. 2008. Long-term burning interacts with herbivory to slow decomposition. Ecology 89:1188–94.

    PubMed  Article  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K. 2009. Global pyrogeography: the current and future distribution of wildfire. Plos One 4:e5102.

    PubMed  Article  Google Scholar 

  • La Fage JP, Nutting WL, Haverty MI. 1973. Desert subterranean termites: a method for studying foraging behavior. Environ Entomol 2:954–6.

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–50.

    Article  Google Scholar 

  • Macandza VA, Owen-Smith N, Cross PC. 2004. Forage selection by African buffalo in the late dry season in two landscapes. S Afr J Wildl Res 34:113–21.

    Google Scholar 

  • Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–72.

    Article  CAS  Google Scholar 

  • Mlambo D, Mwenje E. 2010. Influence of Colophospermum mopane canopy cover on litter decomposition and nutrient dynamics in a semi-arid African savannah. Afr J Ecol 48:1021–9.

    Article  Google Scholar 

  • Murphy KL, Klopatek JM, Klopatek CC. 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol Appl 8:1061–71.

    Article  Google Scholar 

  • Ohiagu CE, Wood TG. 1979. Grass production and decomposition in Southern Guinea savanna, Nigeria. Oecologia 40:155–65.

    Google Scholar 

  • Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–31.

    Article  Google Scholar 

  • Parr CL, Andersen AN. 2006. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv Biol 20:1610–19.

    PubMed  Article  Google Scholar 

  • Parr CL, Chown SL. 2003. Burning issues for conservation: a critique of faunal fire research in Southern Africa. Austral Ecol 28:384–95.

    Article  Google Scholar 

  • Parr CL, Robertson HG, Biggs HC, Chown SL. 2004. Response of African savanna ants to long-term fire regimes. J Appl Ecol 41:630–42.

    Article  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, De Oliveira AA, Poorter L, Ramanamanjato J-B, Salk C, Varela A, Weiblen GD, Lerdau MT. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–11.

    Article  CAS  Google Scholar 

  • R Development Core Team. 2010. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.r-project.org.

  • Radford IJ, Andersen AN. 2012. Effects of fire on grass-layer savanna macroinvertebrates as key food resources for insectivorous vertebrates in northern Australia. Austral Ecol 37:733–42.

    Article  Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JD. 1991. A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9:101–26.

    PubMed  Article  CAS  Google Scholar 

  • Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31.

    PubMed  Article  Google Scholar 

  • Schimel DS, Alvves D, Enting I, Heimann M, Joos F, Raymond D, Wigley T. 1996. CO2 and the carbon cycle. In: Houghton J, Filho LM, Callander BA, Harris N, Kattenberg A, Maskell K, Eds. Climate change 1995. Cambridge: Cambridge University Press. p 76–86.

    Google Scholar 

  • Scholes RJ, Archer SR. 1997. Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–44.

    Article  Google Scholar 

  • Schönholzer F, Kohli L, Hahn D, Daniel O, Goez C, Zeyer J. 1998. Effects of decomposition of leaves on bacterial biomass and on palatability to Lumbricus terrestris L. Soil Biol Biochem 30:1805–13.

    Article  Google Scholar 

  • Schuurman G. 2005. Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–49.

    Article  Google Scholar 

  • Senior CA, Jones RG, Lowe JA, Durman CF, Hudson D. 2002. Predictions of extreme precipitation and sea-level rise under climate change. Philos Trans R Soc 360:1301–11.

    Article  CAS  Google Scholar 

  • Silveira JM, Barlow J, Krusche AV, Orwin KH, Balch JK, Moutinho P. 2009. Effects of experimental fires on litter decomposition in a seasonally dry Amazonian forest. J Trop Ecol 25:657–63.

    Article  Google Scholar 

  • Smith JL, Rust MK. 1994. Temperature preferences of the western subterranean termite, Reticulitermes hesperus banks. J Arid Environ 28:313–23.

    Article  Google Scholar 

  • Survey of economic plants for arid and semi-arid lands (SEPASAL) database. 1999. Royal Botanic Gardens, Kew. [online] URL: http://apps.kew.org/sepasalweb/sepaweb. Accessed 20/07/2012; 14h30.

  • Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Berkeley: University of California Press.

    Google Scholar 

  • Taylor AR, Schröter D, Pflug A, Wolters V. 2004. Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Global Change Biol 10:1313–24.

    Article  Google Scholar 

  • Tian G, Badejo M, Okoh A, Ishida F, Kolawole G, Hayashi Y, Salako F. 2007. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa. Biogeochemistry 86:217–29.

    Article  Google Scholar 

  • Van de Vijver CADM, Poot P, Prins HHT. 1999. Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna. Plant Soil 214:173–85.

    Article  Google Scholar 

  • van Oudtshoorn F. 2006. Guide to grasses of Southern Africa. 2nd edition, 4th impression. Pretoria: Briza.

  • Vanderbilt KL, White CS, Hopkins O, Craig JA. 2008. Aboveground decomposition in arid environments: results of a long-term study in central New Mexico. J Arid Environ 72:696–709.

    Article  Google Scholar 

  • Wall DH, Bradford MA, John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny LES, Lin K-C, Maryati M, Masse D, Pokarzhevskii A, Rahman H, SabarÁ MG, Salamon J-A, Swift MJ, Varela A, Vasconcelos HL, White DON, Zou X. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biol 14:2661–77.

    Google Scholar 

  • Whitford WG, Steinberger Y, Ettershank G. 1982. Contributions of subterranean termites to the “economy” of Chihuahuan desert ecosystems. Oecologia 55:298–302.

    Article  Google Scholar 

  • Williams RJ, Bradstock RA, Cary GJ, Enright NJ, Liedlof AM, Lucas C, Whelan RJ, Anderson AN, Bowman DMJS, Clarke PJ, Cook GD, Hennessy KJ, York A. 2009. Interactions between climate change, fire regimes and biodiversity in Australia: a preliminary assessment. Canberra: Department of Climate Change.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Trapnell Fund, the Rufford Small Grants, the Centre for Invasion Biology, and the University of Pretoria for research funding. We especially thank William Bond and the Zululand Tree Project for assistance with sampling in Hluhluwe. KZN-Wildlife and SANParks are thanked for project support and permission to work in the parks. William Bond, Amy Austin and two anonymous reviewers are also thanked for their valuable comments on earlier versions of the manuscript. Field and laboratory assistants, in particular Sonja Streicher and Ingrid van der Merwe, are gratefully acknowledged for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Davies.

Additional information

Author Contributions

ABD, BJvR and CLP designed the study. ABD collected and analysed the data. ABD, BJvR, PE and CLP discussed the results and wrote the paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davies, A.B., van Rensburg, B.J., Eggleton, P. et al. Interactive Effects of Fire, Rainfall, and Litter Quality on Decomposition in Savannas: Frequent Fire Leads to Contrasting Effects. Ecosystems 16, 866–880 (2013). https://doi.org/10.1007/s10021-013-9657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9657-0

Keywords

  • burning
  • crude protein content
  • disturbance
  • global change
  • grass decomposition
  • mean annual precipitation
  • termites