Ecosystems

, Volume 16, Issue 6, pp 923–933

Diversity and Patch-Size Distributions of Biological Soil Crusts Regulate Dryland Ecosystem Multifunctionality

  • Matthew A. Bowker
  • Fernando T. Maestre
  • Rebecca L. Mau
Article

Abstract

Recent studies report that multifunctionality—the simultaneous provision of multiple ecosystem functions—in drylands depends on biodiversity. Others report that specific size distributions of vegetation patches indicate overall ecosystem health and function. Using a biocrust (micro-vegetation of mosses, lichens, and cyanobacteria) model system, and multivariate modeling, we determined the relative importance of biodiversity, patch-size distribution, and total abundance to nutrient cycling and multifunctionality. In most cases we explained at least 20%, and up to 65%, of the variation in ecosystem functions, and 42% of the variation in multifunctionality. Species richness was the most important determinant of C cycling, constituting an uncommonly clear link between diversity and function in a non-experimental field setting. Regarding C cycling in gypsiferous soils, we found that patch size distributions with a greater frequency of small to medium patches, as opposed to very small patches, were more highly functional. Nitrogen cycling was largely a function of biocrust cover in two soil types, whereas in gypsiferous soils, more central-tending patch size distributions were less functional with regards to N cycling. All three community properties were about equally important to multifunctionality. Our results highlight the functional role of biotic attributes other than biodiversity, and indicate that high cover and diversity, together with a particular patch-size distribution, must be attained simultaneously to maximize multifunctionality. The results also agree with trends observed with other terrestrial and aquatic communities that more biodiversity is needed to sustain multifunctionality compared to single functions considered independently.

Keywords

biodiversity drylands enzyme activities lichens mosses patch-size distribution ecosystem multifunctionality mediterranean ecosystems structural equation modeling 

Supplementary material

10021_2013_9644_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2515 kb)

References

  1. Bardgett RD. 2005. The biology of soil: a community and ecosystem approach. Oxford: Oxford University Press.Google Scholar
  2. Belnap J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–35.CrossRefGoogle Scholar
  3. Bowker MA, Maestre FT. 2012. Inferring local competition intensity from patch size distributions: a test using biological soil crusts. Oikos . doi:10.1111/j.1600-0706.2012.20192.x.Google Scholar
  4. Bowker MA, Maestre FT, Escolar C. 2010a. Biological soil crusts as a model system for examining the biodiversity–ecosystem function relationship in soils. Soil Biol Biochem 42:405–17.CrossRefGoogle Scholar
  5. Bowker MA, Soliveres S, Maestre FT. 2010b. Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J Ecol 98:551–60.CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR. 2002. Model selection and multimodel inference. A practical information—theoretical approach. Berlin: Springer.Google Scholar
  7. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Conner MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98:572–92.PubMedCrossRefGoogle Scholar
  8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narvani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67.PubMedCrossRefGoogle Scholar
  9. Castillo-Monroy AP, Bowker MA, Maestre FT, Rodríguez-Echeverría S, Martinez I, Barraza-Zepeda CE, Escolar C. 2011. Relationships between biological soil crust, bacterial diversity and abundance and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–74.CrossRefGoogle Scholar
  10. Cragg RG, Bardgett RD. 2001. How changes in animal diversity within a soil trophic group influence ecosystem processes. Soil Biol Biochem 33:2073–81.CrossRefGoogle Scholar
  11. Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH. 2006. Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20.CrossRefGoogle Scholar
  12. Eldridge D, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopoulos J, Escudero A. 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13:499–510.CrossRefGoogle Scholar
  13. Fitter AH, Gilligan CA, Kleczkowski A, Twyman RW, Pitchford JW, and the Members of the Soil Biodiversity Programme. 2005. Biodiversity and ecosystem function in soil. Funct Ecol 19:369–77.CrossRefGoogle Scholar
  14. Gamfeldt L, Hillebrand H, Jonsson P. 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–31.PubMedCrossRefGoogle Scholar
  15. Giller PS, Hillebrand H, Berninger UG, Gessner MO, Hawkins S, Inchausti P, Inglis C, Leslie H, Malmqvist B, Monaghan MT, Morin PJ, O’Mullan G. 2004. Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–36.CrossRefGoogle Scholar
  16. Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR. 2007. Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–9.PubMedCrossRefGoogle Scholar
  17. Griffiths BS, Boag B, Wheatley R, Kuan HL, Christensen S, Ekelund F, Sørensen SJ, Muller S, Bloem J. 2001. An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–22.CrossRefGoogle Scholar
  18. He J-Z, Ge Y, Xu Z, Chen C. 2009. Linking soil bacterial biodiversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. J Soils Sediments 9:547–54.CrossRefGoogle Scholar
  19. Hector A, Bagchi R. 2007. Biodiversity and ecosystem multifunctionality. Nature 448:188–90.PubMedCrossRefGoogle Scholar
  20. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monograph 75:3–35.CrossRefGoogle Scholar
  21. Jax K. 2010. Ecosystem functioning. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, El Aich A, de Ruiter PC. 2007. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–17.PubMedCrossRefGoogle Scholar
  23. Kéfi S, Alados CL, Chaves RCG, Pueyo Y, Rietkerk M. 2010. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Comment. Ecology 13:499–510.Google Scholar
  24. Kinzig A, Pacala S, Tilman D. 2002. The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton: Princeton University Press.Google Scholar
  25. Laakso J, Setälä H. 1999. Sensitivity of primary production to changes in the architecture of belowground foodwebs. Oikos 87:57–64.CrossRefGoogle Scholar
  26. Lange OL, Belnap J, Reichenberger H, Meyer A. 1997. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15.Google Scholar
  27. Liiri M, Setälä H, Haimi J, Pennanen T, Fritze H. 2002. Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos 96:137–49.CrossRefGoogle Scholar
  28. Maestre FT, Escudero A. 2009. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology 90:1729–35.PubMedCrossRefGoogle Scholar
  29. Maestre FT, Escudero A, Martínez I, Guerrero C, Rubio A. 2005. Does spatial patterning matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–73.CrossRefGoogle Scholar
  30. Maestre FT, Escolar C, Martínez I, Escudero A. 2008. Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–6.CrossRefGoogle Scholar
  31. Maestre FT, Bowker MA, Cantón Y, Castillo-Monroy AP, Cortina J, Escolar C, Escudero A, Lázaro R, Martínez I. 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–91.CrossRefGoogle Scholar
  32. Maestre FT, Castillo AP, Bowker MA, Ochoa-Hueso R. 2012a. Species richness and composition are more important than spatial pattern and evenness as drivers of ecosystem multifunctionality. J Ecol 100:317–30.CrossRefGoogle Scholar
  33. Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M et al. 2012b. Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–18.PubMedCrossRefGoogle Scholar
  34. Mooney HA, Cropper A, Reed W. 2004. The millenium ecosystem assessment: what is it all about? Trends Ecol Evol 19:221–4.PubMedCrossRefGoogle Scholar
  35. Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH. 2011. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6:e17476.PubMedCrossRefGoogle Scholar
  36. Naeem S, Wright JP. 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–79.CrossRefGoogle Scholar
  37. Naeem S, Loreau M, Inchausti P. 2002. Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework. In: Loreau M, Naeem S, Inchausti S, Eds. Biodiversity and ecosystem functioning. New York: Oxford University Press. p 3–11.Google Scholar
  38. Pielou EC. 1969. An introduction to mathematical ecology. New York: Wiley.Google Scholar
  39. Reiss J, Bridle JR, Montoya JM, Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–14.PubMedCrossRefGoogle Scholar
  40. Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I. 2007. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–12.PubMedCrossRefGoogle Scholar
  41. Sedia EG, Ehrenfeld JG. 2006. Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biol Fertil Soils 43:177–89.CrossRefGoogle Scholar
  42. Setälä H, MacLean MA. 2004. Decomposition of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107.PubMedCrossRefGoogle Scholar
  43. Shulze ED, Mooney HA. 1993. Biodiversity and ecosystem function. New York: Springer.CrossRefGoogle Scholar
  44. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Weimken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72.CrossRefGoogle Scholar
  45. Wardle DA. 1999. Is “sampling effect” a problem for experiments investigating biodiversity–ecosystem function relationships? Oikos 83:403–7.CrossRefGoogle Scholar
  46. Weerman EJ, Van Belzen J, Rietkerk M, Temmerman S, Kéfi S, Herman PMJ, van de Koppel J. 2012. Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93:608–18.PubMedCrossRefGoogle Scholar
  47. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R. 2006. Impacts of biodiversity loss on ecosystem services. Science 314:787–90.PubMedCrossRefGoogle Scholar
  48. Zavaleta ES, Pasari JS, Hulvey CB, Tilman GD. 2010. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci USA 107:1443–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matthew A. Bowker
    • 1
    • 2
  • Fernando T. Maestre
    • 1
  • Rebecca L. Mau
    • 1
    • 3
  1. 1.Área de Biodiversidad y Conservación, Departamento de Biología y GeologíaUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  3. 3.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations