Ecosystems

, Volume 16, Issue 5, pp 722–735 | Cite as

Integrated Assessment of Wind Effects on Central California’s Pelagic Ecosystem

  • Marisol García-Reyes
  • William J. Sydeman
  • Sarah Ann Thompson
  • Bryan A. Black
  • Ryan R. Rykaczewski
  • Julie A. Thayer
  • Steven J. Bograd
Article

Abstract

Ecosystem-based management requires integrated physical studies on biological functions. In this study, we hypothesized that seasonal variation in upwelling-favorable winds has differential influences on species of the central California Current pelagic ecosystem. To test this hypothesis, we developed multivariate indicators of upwelling and species’ responses using wind and sea surface temperature (SST) data from buoys and growth and reproductive data for 11 species of fish and seabirds. From previous work, we predicted that winds and SST could be decomposed into winter and spring/summer ‘modes’ of variability, but only a single mode of “winter/spring” environmental variability was observed. We attribute this difference from expectations to the local and shorter-term measurements of winds and SST used in this study. Most species responded to winds and SST variability similarly, but SST was a better predictor of most biological responses. Both SST and wind were better predictors than the traditional upwelling index. Notably, Pacific sardine (Sardinops sajax) was disassociated with the other biotic measurements and showed no relationships with coastal upwelling. The multivariate indicators developed here are particularly appropriate for integrated ecosystem assessments of climatic influences on marine life because they reflect both structure and processes (upwelling and timing/growth/productivity) known to determine functions in marine ecosystems.

Keywords

seabirds rockfish salmon sardine upwelling growth breeding success recruitment temperature 

References

  1. Abraham CL, Sydeman WJ. 2004. Ocean climate, euphausiids and auklet nesting: inter-annual trends and variation in phenology, diet and growth of a planktivorous seabird, Ptychoramphus aleuticus. Mar Ecol Prog Ser 274:235–50.CrossRefGoogle Scholar
  2. Abraham CL, Sydeman WJ. 2006. Prey-switching by Cassin’s auklet Ptychoramphus aleuticus reveals seasonal climate-related cycles of Euphausia pacifica and Thysanoessa spinifera. Mar Ecol Prog Ser 313:271–83.CrossRefGoogle Scholar
  3. Andrewartha HG, Birch LC. 1954. The distribution and abundance of animals. Chicago: University of Chicago Press. 782 pp.Google Scholar
  4. Bakun A. 1973. Coastal upwelling indices, west coast of North America, 1946–71. NOAA Technical Report, NMFS SSRF-671. 141 pp.Google Scholar
  5. Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science 247:198–201.PubMedCrossRefGoogle Scholar
  6. Bakun A, Field DB, Redondo-Rodriguez A, Weeks SJ. 2010. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob Change Biol 16:1213–28.CrossRefGoogle Scholar
  7. Black BA, Boehlert GW, Yoklavich MM. 2005. Using tree-ring crossdating techniques to validate age in long-lived fishes. Can J Fish Aquat Sci 62:2277–84.CrossRefGoogle Scholar
  8. Black BA, Boehlert GW, Yoklavich MM. 2008. Establishing climate–growth relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific using a dendrochronological approach. Fish Oceanogr 17:368–79.CrossRefGoogle Scholar
  9. Black BA, Schroeder ID, Sydeman WJ, Bograd SJ, Lawson PW. 2010. Wintertime ocean conditions synchronize rockfish growth and seabird reproduction in the central California Current ecosystem. Can J Fish Aquat Sci 67:1149–58.CrossRefGoogle Scholar
  10. Black BA, Schroeder ID, Sydeman WJ, Bograd SJ, Wells BK, Schwing FB. 2011. Winter and summer upwelling modes and their biological importance in the California Current Ecosystem. Glob Change Biol 17:2536–45.CrossRefGoogle Scholar
  11. Bograd SJ, Schroeder I, Sarkar N, Qiu XM, Sydeman WJ, Schwing FB. 2009. Phenology of coastal upwelling in the California Current. Geophys Res Lett 36:L01602.CrossRefGoogle Scholar
  12. Botsford LW, Castilla JC, Peterson CH. 1997. The management of fisheries and marine ecosystems. Science 277:509–15.CrossRefGoogle Scholar
  13. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–5.PubMedCrossRefGoogle Scholar
  14. Capet XJ, Marchesiello P, McWilliams JC. 2004. Upwelling response to coastal wind profiles. Geophys Res Lett 31:L13311.CrossRefGoogle Scholar
  15. Chavez FP, Messié M. 2009. A comparison of Eastern Boundary Upwelling Ecosystems. Prog Oceanogr 83:80–6.CrossRefGoogle Scholar
  16. Checkley DM Jr, Barth JA. 2009. Patterns and processes in the California Current System. Prog Oceanogr 83:49–64.CrossRefGoogle Scholar
  17. Cury PM, Shin YJ, Planque B, Durant JM, Fromentin JM, Kramer-Schadt S, Stenseth NC, Travers M, Grimm V. 2008. Ecosystem oceanography for global change in fisheries. Trends Ecol Evol 23:338–46.PubMedCrossRefGoogle Scholar
  18. Dever EP, Lentz SJ. 1994. Heat and salt balances over the northern California shelf in winter and spring. J Geophys Res 99:16001–17.CrossRefGoogle Scholar
  19. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM, Riviere P. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607.CrossRefGoogle Scholar
  20. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD. 2012. Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37.CrossRefGoogle Scholar
  21. Field JC, MacCall AD, Bradley W, Sydeman WJ. 2010. Estimating the impacts of fishing on dependent predators: a case study in the California Current. Ecol Appl 20:2223–36.PubMedCrossRefGoogle Scholar
  22. Frederiksen M, Mavor RA, Wanless S. 2007. Seabirds as environmental indicators: the advantages of combining data sets. Mar Ecol Prog Ser 352:205–11.CrossRefGoogle Scholar
  23. García-Reyes M, Largier JL. 2010. Observations of increased wind-driven coastal upwelling off central California. J Geophys Res 115:C04011.CrossRefGoogle Scholar
  24. García-Reyes M, Largier JL. 2012. Seasonality of coastal upwelling off central and northern California: new insights, including temporal and spatial variability. J Geophys Res 117:C03028.CrossRefGoogle Scholar
  25. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EM, Perry MT, Selig ER, Spalding M, Steneck R, Watson R. 2008. A global map of human impact on marine ecosystems. Science 319:948–52.PubMedCrossRefGoogle Scholar
  26. Hemery G, D’Amico F, Castege I, Dupont B, D’Elbee J, Lalanne Y, Mouches C. 2008. Detecting the impact of oceano-climatic changes on marine ecosystems using a multivariate index: the case of the Bay of Biscay (North Atlantic-European Ocean). Glob Change Biol 14:27–38.Google Scholar
  27. Hill KT, Lo N, Macewicz B, Crone P, Felix-Uraga R. 2010. Assessment of the Pacific sardine resource in 2010 for US management in 2011. NOAA Southwest Fisheries Science Center. November 2010.Google Scholar
  28. Holt CA, Mantua NJ. 2009. Defining spring transition: regional indices for the California Current System. Mar Ecol Prog Ser 393:285–97.CrossRefGoogle Scholar
  29. Iles AC, Gouhier TC, Menge BA, Stewart JS, Haupt AJ, Lynch MC. 2012. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob Change Biol 18:783–96.CrossRefGoogle Scholar
  30. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–38.PubMedCrossRefGoogle Scholar
  31. Jacox MG, Edwards CA. 2011. Effects of stratification and shelf slope on nutrient supply in coastal upwelling regions. J Geophys Res 116:C03019.CrossRefGoogle Scholar
  32. Jolliffe IT. 2002. Principal component analysis. 2nd ed. Springer series in statistics. ISBN 0-387-95442-2.Google Scholar
  33. Koslow JA, Goericke R, Lara-Lopez A, Watson W. 2011. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current. Mar Ecol Prog Ser 436:207–18.CrossRefGoogle Scholar
  34. Lack D. 1954. The natural regulation of animal numbers. London: Oxford University Press.Google Scholar
  35. Large WG, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–36.CrossRefGoogle Scholar
  36. Levin PS, Fogarty MJ, Murawski SA, Fluharty D. 2009. Integrated ecosystem assessments: developing the scientific basis for ecosystem-based management of the ocean. Public Library of Science Biology 7:e1000014.Google Scholar
  37. Logerwell EA, Mantua N, Lawson PW, Francis RC, Agostini VN. 2003. Tracking environmental processes in the coastal zone for understanding and predicting Oregon coho (Oncorhynchus kisutch) marine survival. Fish Oceanogr 12:554–68.CrossRefGoogle Scholar
  38. Love MS, Yoklavich M, Thorsteinson L. 2002. The rockfishes of the Northeast Pacific. Berkeley and Los Angeles: University of California Press.Google Scholar
  39. Mann KH. 2000. Ecology of coastal waters, with implications for management. 2nd edn. Malden: Blackwell Science.Google Scholar
  40. Mantua NJ, Hare SR. 2002. The Pacific Decadal Oscillation. J Oceanogr 58:35–44.CrossRefGoogle Scholar
  41. May RM, Beddington JR, Clark CW, Holt SJ, Laws RM. 1979. Management of multispecies fisheries. Science 205:267–76.PubMedCrossRefGoogle Scholar
  42. Moloney CL, St. John MA, Denman KL, Karl DM, Koster FW, Sundby S, Wilson RP. 2011. Weaving marine food webs from end to end under global change. J Marine Syst 84:106–11.CrossRefGoogle Scholar
  43. Narayan N, Paul A, Mulitza S, Schulz M. 2010. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci Discuss 7:335–60.CrossRefGoogle Scholar
  44. Nur N, Sydeman WJ. 1999. Survival, breeding probability and reproductive success in relation to population dynamics of Brandt’s cormorants Phalacrocorax penicillatus. Bird Study 46(Suppl):S92–103.CrossRefGoogle Scholar
  45. Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature 374:255–7.CrossRefGoogle Scholar
  46. Pena MA, Bograd SJ. 2007. Time series of the northeast Pacific. Prog Oceanogr 75:115–19.CrossRefGoogle Scholar
  47. Pickett MH, Schwing FB. 2006. Evaluating upwelling estimates off the west coasts of North and South America. Fish Oceanogr 15:256–69.CrossRefGoogle Scholar
  48. Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ. 2004. Ecosystem-based fishery management. Science 305:346–7.PubMedCrossRefGoogle Scholar
  49. Rice JC, Rochet MJ. 2005. A framework for selecting a suite of indicators for fisheries management. ICES J Mar Sci 62:516–27.CrossRefGoogle Scholar
  50. Rosenfeld LK, Schwing FB, Garfield N, Tracy DE. 1994. Bifurcated flow from an upwelling center: a cold water source for Monterey Bay. Cont Shelf Res 14:931–64.CrossRefGoogle Scholar
  51. Rykaczewski RR, Checkley DM Jr. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc Natl Acad Sci USA 105:1965–70.PubMedCrossRefGoogle Scholar
  52. Schroeder ID, Sydeman WJ, Sarkar N, Thompson SA, Bograd SJ, Schwing FB. 2009. Winter pre-conditioning of seabird phenology in the California Current. Mar Ecol Prog Ser 393:211–23.CrossRefGoogle Scholar
  53. Schwing FB, O’Farrell M, Steger JM, Baltz K. 1996. Coastal upwelling indices, west coast of North America, 1946–95. NOAA Technical Report NOAA-TM-NMFS-SWFSC-231, pp. 32Google Scholar
  54. Schwing FB, Murphree T, Green PM. 2002. The Northern Oscillation Index (NOI): a new climate index for the northeast Pacific. Prog Oceanogr 53:115–39.CrossRefGoogle Scholar
  55. Smith PE, Moser HG. 2003. Long term trends and variability in the larvae of Pacific sardine and associated fish species of the California Current region. Deep-Sea Res II 50:2519–36.CrossRefGoogle Scholar
  56. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  57. Strom L, Tjernstrom M. 2004. Variability in the summertime coastal marine atmospheric boundary-layer off California, USA. Q J Roy Meteorol Soc 130:423–48.CrossRefGoogle Scholar
  58. Sydeman WJ, Hobson KA, Pyle P, McLaren EB. 1997. Trophic relationships among seabirds in central California: combined stable isotope and conventional dietary approach. Condor 99:327–36.CrossRefGoogle Scholar
  59. Sydeman WJ, Hester MM, Thayer JA, Gress F, Martin P, Buffa J. 2001. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969–1997. Prog Oceanogr 49:309–29.CrossRefGoogle Scholar
  60. Sydeman WJ, Mills KL, Santora JA, Thompson SA, Bertram DF, Morgan KH, Wells BK, Hipfner JM, Wolf SG. 2009. Seabirds and climate in the California Current—a synthesis of change. Calif Coop Ocean Fish Investig Rep 50:82–104.Google Scholar
  61. Thayer JA. 2009. Rhinoceros auklet reproduction, survival and diet in relation to ocean climate. Ph.D. Dissertation. University of California, Davis.Google Scholar
  62. Thayer JA, Sydeman WJ. 2007. Spatio-temporal variability in prey harvest and reproductive ecology of a piscivorous seabird, Cerorhinca monocerata, in an upwelling system. Mar Ecol Prog Ser 329:253–65.CrossRefGoogle Scholar
  63. Thompson JE, Hanna RW. 2010. Using cross-dating techniques to validate ages of aurora rockfish (Sebastes aurora): estimates of age, growth and female maturity. Environ Biol Fishes 88:377–88.CrossRefGoogle Scholar
  64. Thompson SA, Sydeman WJ, Santora JA, Black BA, Suryan RM, Calambokidis J, Peterson WT, Bograd SJ. 2012. Linking predators to seasonality of upwelling: using food web indicators and path analysis to infer trophic connections. Prog Oceanogr 101:106–20.CrossRefGoogle Scholar
  65. Vander Woude AJ, Largier JL, Kudela KM. 2006. Nearshore retention of upwelled waters north and south of Point Reyes (northern California). Deep-Sea Res II 53:2985–98.CrossRefGoogle Scholar
  66. Wells BK, Grimes CB, Waldvogel JB. 2007. Quantifying the effects of wind, upwelling, curl, sea surface temperature and sea level height on growth and maturation of a California Chinook salmon (Oncorhynchus tshawytscha) population. Fish Oceanogr 16:363–82.CrossRefGoogle Scholar
  67. Wells BK, Field JC, Thayer JA, Grimes CB, Bograd SJ, Sydeman WJ, Schwing FB, Hewitt R. 2008. Untangling the relationships among climate, prey and top predators in an ocean ecosystem. Mar Ecol Prog Ser 364:15–29.CrossRefGoogle Scholar
  68. Wells BK, Santora JA, Field JC, MacFarlane RB, Marinovic BB, Sydeman WJ. 2012. Population dynamics of Chinook salmon Oncorhynchus tshawytscha relative to prey availability in the central California coastal region. Mar Ecol Prog Ser 457:125–37.CrossRefGoogle Scholar
  69. Winant CD, Dorman CE, Friehe CA, Beardsley RC. 1988. The marine layer off Northern California: an example of supercritical channel flow. J Atmos Sci 45:3588–605.CrossRefGoogle Scholar
  70. Wolter K, Timlin MS. 1993. Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proceedings of the 17th Climate Diagnostics Workshop, pp. 52–57.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marisol García-Reyes
    • 1
  • William J. Sydeman
    • 1
  • Sarah Ann Thompson
    • 1
  • Bryan A. Black
    • 2
  • Ryan R. Rykaczewski
    • 3
  • Julie A. Thayer
    • 1
  • Steven J. Bograd
    • 4
  1. 1.Farallon Institute for Advanced Ecosystem ResearchPetalumaUSA
  2. 2.University of Texas at Austin Marine Science InstitutePort AransasUSA
  3. 3.Department of Biological Sciences and Marine Science ProgramUniversity of South CarolinaColumbiaUSA
  4. 4.Environmental Research DivisionNOAA-NMFSPacific GroveUSA

Personalised recommendations