Skip to main content

Altered Sea Ice Thickness and Permanence Affects Benthic Ecosystem Functioning in Coastal Antarctica

Abstract

Antarctic sea ice and the cold waters surrounding the continent are key elements of the global climate system, influencing heat redistribution, oceanic circulation and the absorption of carbon dioxide from the atmosphere. However, the Southern Ocean is predicted to warm by 1–6°C over the next century, altering sea ice extent, thickness and permanence. To better understand the connections between coastal sea ice conditions and the functioning of Antarctica’s unique marine benthic ecosystems, we performed manipulative experiments on the seafloor at two southwestern Ross Sea sites with contrasting sea ice conditions. Benthic systems at both study sites were net heterotrophic during the study period (early November), with primary production most likely limited by light availability rather than nutrients. There was five times more fresh algal detrital material in benthic sediments at the site with the thinner, snow-free, annually formed sea ice, relative to the site with thicker, multiyear sea ice. This elevated quantity and quality of algal detrital matter corresponded with a significantly greater rate of sediment oxygen utilization by the benthos and an altered pathway of nitrogen regeneration (tighter coupling between nitrification and denitrification). Large benthic animals (brittle stars, Ophionotus victoriae) enhanced the efflux of dissolved inorganic nutrients from the sediment to the water column and played a greater role in nutrient regeneration at the site with more food. Although changes in sea ice characteristics in the Western Ross Sea are difficult to predict at present, large benthic organisms can be expected to have an expanded role in mediating the effects of elevated coastal productivity and detritus supply on ecosystem dynamics in this part of Antarctica.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  • Aller RC. 1978. Experimental studies of changes produced by deposit feeders on pore water, sediment and overlying water chemistry. Am J Sci 278:1185–234.

    Article  CAS  Google Scholar 

  • Arrigo KR, Thomas DN. 2004. Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–86.

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL. 2004. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep-Sea Res II 51:117–38.

    Article  CAS  Google Scholar 

  • Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science 336:1408.

    PubMed  Article  CAS  Google Scholar 

  • Barry JP, Dayton PK. 1988. Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biol 8:367–76.

    Article  Google Scholar 

  • Bergamasco A, Carniel S. 2000. Sensitivity analysis of a robust diagnostic general circulation model of the Ross Sea. J Mar Syst 27:3–36.

    Article  Google Scholar 

  • Blackburn TH, Blackburn ND. 1993. Coupling of cycles and global significance of sediment diagenesis. Mar Geol 113:101–10.

    Article  CAS  Google Scholar 

  • Blackburn TH, Hall POJ, Hulth S, Landén A. 1996. Organic-N loss by efflux and burial associated with a low efflux of inorganic N and with nitrate assimilation in Arctic sediments (Svalbard, Norway). Mar Ecol Prog Ser 141:283–93.

    Article  CAS  Google Scholar 

  • Caffrey JM, Sloth NP, Kaspar HF, Blackburn TH. 1993. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm. Microb Ecol 12:159–67.

    Article  CAS  Google Scholar 

  • Cai W-J, Sayles FL. 1996. Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52:123–31.

    Article  CAS  Google Scholar 

  • Cattaneo-Vietti R, Chiantore M, Misic C, Povero P, Fabiano M. 1999. The role of pelagic-benthic coupling in structuring littoral benthic communities at Terra Nova Bay (Ross Sea) and in the Straits of Magellan. Sci Mar 63:113–21.

    Article  Google Scholar 

  • Cummings VJ, Thrush SF, Norkko A, Andrew NL, Hewitt JE, Funnell GA, Schwarz A-M. 2006. Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarct Sci 18:633–44.

    Article  Google Scholar 

  • Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, others  . 2011. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6:e16069.

    PubMed  Article  CAS  Google Scholar 

  • Curry CW, Bennett RH, Hulbert MH, Curry KJ, Faas RW. 2004. Comparative study of sand porosity and a technique for determining porosity of undisturbed marine sediment. Mar Georesour Geotechnol 22:231–52.

    Article  CAS  Google Scholar 

  • Dayton PK. 1989. Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–6.

    PubMed  Article  CAS  Google Scholar 

  • Dayton PK, Oliver JS. 1977. Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197:55–8.

    PubMed  Article  CAS  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–28.

    Article  Google Scholar 

  • Dayton PK, Watson D, Palmisano A, Barry JP, Oliver JS, Rivera D. 1986. Distribution patterns of benthic microalgae standing stock at McMurdo Sound, Antarctica. Polar Biol 6:207–13.

    Article  Google Scholar 

  • Ericson JA, Ho MA, Miskelly A, King CK, Virtue P, Tilbrook B. 2011. Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biol . doi:10.1007/s00300-011-1150-7.

    Google Scholar 

  • Eyre BD, Ferguson AJP, Webb A, Maher D, Oakes JM. 2011. Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–33.

    Article  CAS  Google Scholar 

  • Farías L, Gracoa M, Ulloa O. 2004. Temporal variability of nitrogen cycling in continental-shelf sediments of the upwelling ecosystem off central Chile. Deep-Sea Res II 51:2491–505.

    Article  Google Scholar 

  • Fratt DB, Dearborn JH. 1984. Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biol 3:127–39.

    Article  Google Scholar 

  • Fyfe JC, Saenko OA, Zickfeld K, Eby M, Weaver AJ. 2007. The role of poleward-intensifying winds on Southern Ocean warming. J Clim 20:5391–400.

    Article  Google Scholar 

  • Glud RN, Khül M, Wenzhöfer F, Rysgaard S. 2002. Benthic microphytes of a high Arctic fjord: importance for ecosystem primary production. Mar Ecol Prog Ser 238:15–29.

    Article  Google Scholar 

  • Grebmeier JM, McRoy CP. 1989. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. III. Benthic food supply and carbon cycling. Mar Ecol Prog Ser 53:79–91.

    Article  Google Scholar 

  • Gypens N, Lancelot C, Soetaert K. 2008. Simple parameterisations for describing N and P diagenetic processes: application in the North Sea. Prog Oceanogr 76:89–110.

    Article  Google Scholar 

  • Hines ME, Orem WH, Lyons BW, Jones GE. 1982. Microbial activity and bioturbation-induced oscillations in pore water chemistry of estuarine sediments in spring. Nature 299:433–5.

    Article  CAS  Google Scholar 

  • Huettel M, Gust G. 1992. Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–67.

    Article  Google Scholar 

  • Hutchins DA, Mulholland MR, Fu F. 2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22:128–45.

    Article  Google Scholar 

  • Kellogg DE, Kellogg TB. 1982. Diatoms from brittle star stomach contents: implications for sediment reworking. Antarct J US 17:167–9.

    Google Scholar 

  • Kim S, Thurber A, Hammerstrom K, Conlan K. 2007. Seastar response to organic enrichment in an oligotrophic polar habitat. J Exp Mar Biol Ecol 346:66–75.

    Article  Google Scholar 

  • Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG. 2011. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479:509–13.

    PubMed  Article  CAS  Google Scholar 

  • Lohrer AM, Thrush SF, Gibbs MM. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431:1092–5.

    PubMed  Article  CAS  Google Scholar 

  • McMinn A, Pankowskii A, Ashworth C, Bhagooli R, Ralph P, Ryan K. 2010. In situ net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplankton and benthic algal communities. Mar Biol 157:1345–56.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin F, Françoise-Carcaillet F, Rosenberg R. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. J Exp Mar Biol Ecol 315:187–209.

    Article  Google Scholar 

  • Needham HR, Pilditch CA, Lohrer AM, Thrush SF. 2011. Context specific bioturbation mediates changes to ecosystem functioning. Ecosystems . doi:10.1007/s10021-10011-19468-10020.

    Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Gibbs MM, Andrew NL, Norkko J, Schwarz A-M. 2007. Trophic structure of coastal Antarctic food webs associated with changes in food supply and sea ice extent. Ecology 88:2810–20.

    PubMed  Article  CAS  Google Scholar 

  • Norling K, Rosenberg R, Hulth S, Grémare A, Bonsdorff E. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Mar Ecol Prog Ser 322:11–23.

    Article  Google Scholar 

  • Obermüller BE, Morley SA, Barnes DKA, Peck LS. 2010. Seasonal physiology and ecology of Antarctic marine benthic predators and scavengers. Mar Ecol Prog Ser 415:109–26.

    Article  Google Scholar 

  • Reddy TE, Holland DM, Arrigo KR. 2010. Ross Ice Shelf cavity circulation, residence time, and melting: results from a model of oceanic chlorofluorocarbons. Cont Shelf Res 30:733–42.

    Article  Google Scholar 

  • Rysgaard S, Nielsen TG. 2006. Carbon cycling in a high-arctic marine ecosystem—Young Sound, NE Greenland. Prog Oceanogr 71:426–45.

    Article  Google Scholar 

  • Rysgaard S, Thamdrup B, Risgaard-Petersen N, Fossing H, Berg P, Christensen PB, Dalsgaard T. 1998. Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175:261–75.

    Article  CAS  Google Scholar 

  • Rysgaard S, Nielsen TG, Hansen BW. 1999. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 179:13–25.

    Article  CAS  Google Scholar 

  • Rysgaard S, Kühl M, Glud RN, Hansen JW. 2001. Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Mar Ecol Prog Ser 223:15–23.

    Article  Google Scholar 

  • Schwarz A, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S. 2003. Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–99.

    Article  Google Scholar 

  • Sejr MK, Jensen KT, Rysgaard S. 2000. Macrozoobenthic structure in a high-Arctic East Greenland fjord. Polar Biol 23:792–801.

    Article  Google Scholar 

  • Smetacek V, Nichol S. 2005. Polar ocean ecosystems in a changing world. Nature 437:362–8.

    PubMed  Article  CAS  Google Scholar 

  • Smith WO, Marra J, Hiscock MR, Barber RT. 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res II 47:3119–40.

    Article  CAS  Google Scholar 

  • Smith CR, Mincks S, DeMaster DJ. 2006. A synthesis of bentho-pelagic coupling on the Antarctic Shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res II 53:875–94.

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113:C03S90.

    Article  Google Scholar 

  • Thomas DN. 2004. Frozen oceans: the floating world of pack ice. Natural History Museum, London, 224 pp.

  • Thomas DN, Dieckmann GS. 2002. Antarctic sea ice—a habitat for extremophiles. Science 295:641–4.

    PubMed  Article  CAS  Google Scholar 

  • Thrush SF, Cummings VJ. 2011. Massive icebergs, alteration in primary food resources and change in benthic communities at Cape Evans, Antarctica. Mar Ecol. doi:10.1111/j.1439-0485.2011.00462.x.

    Google Scholar 

  • Thrush SF, Dayton PK, Cattaneo-Vietti R, Chiantore M, Cummings VJ, Andrew NL, Hawes I, Kim S, Kvitek R, Schwarz A-M. 2006. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep-Sea Res II 53:959–71.

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Cummings VJ, Norkko A, Chiantore M. 2010. β-Diversity and species accumulation in Antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity. PLoS ONE 5(7):e11899. doi:10.1371/journal.pone.0011899.

    PubMed  Article  Google Scholar 

  • Vaughan DG, Doake CSM. 1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–30.

    Article  CAS  Google Scholar 

  • Vopel K, Thistle D, Rosenberg R. 2003. Effect of the brittle star Amphiura filiformis (Amphiuridae, Echinodermata) on oxygen flux into the sediment. Limnol Oceanogr 48:2034–45.

    Article  CAS  Google Scholar 

  • Wing SR, McLeod RJ, Leichter JJ, Frew RD, Lamare MD. 2012. Sea ice microbial production supports Ross Sea benthic communities: influence of a small but stable subsidy. Ecology 93:314–23.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the New Zealand Ministry of Fisheries’ BioRoss portfolio, and NIWA. We thank Antarctica New Zealand, Scott Base staff and Latitudinal Gradient Project affiliates for excellent logistical support. Many at NIWA contributed to sample collection and analysis; special thanks to all K082 divers. We thank Paul Dayton, Rich Aronson and an anonymous reviewer for helpful suggestions on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Lohrer.

Additional information

Author Contributions

AML, VJC and SFT conceived the study. AML and VJC performed the research. AML analysed the data. AML, VJC and SFT wrote the article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lohrer, A.M., Cummings, V.J. & Thrush, S.F. Altered Sea Ice Thickness and Permanence Affects Benthic Ecosystem Functioning in Coastal Antarctica. Ecosystems 16, 224–236 (2013). https://doi.org/10.1007/s10021-012-9610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9610-7

Keywords

  • coastal Antarctic marine benthos
  • under-ice algal detritus
  • sediment oxygen demand
  • nutrient flux
  • Ophionotus victoriae