Skip to main content

Advertisement

Log in

A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog, Interior Alaska

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Recent high-latitude warming is increasing the vulnerability of permafrost to thaw, which is amplified by local disturbances such as fire. However, the long-term ecological effects and carbon dynamics are not well understood. Here we present a 2200-year record of pollen, plant macrofossils, testate amoebae, and apparent carbon (C) accumulation rates from two peat cores in a collapse-scar bog (thermokarst) near Fairbanks, Alaska. A black spruce ecosystem with low apparent C accumulation rates existed on the site during the first ~1500 years of the record. We identify two thaw events, which are linked to local fires. Permafrost aggraded rapidly following the first thaw, which we attribute to local vegetation feedbacks and a cooler climate. The second thaw event at 525 cal y BP is preceded by a stand-replacing fire, as evidenced by a drastic decline in Picea and an initial increase in Epilobium, Salix, and ericaceous shrubs, followed by a sustained increase in Populus. Locally, the forest does not recover for more than 100 years, and the site has remained permafrost-free for the last 500 years. Following thaw, average apparent C accumulation rates (60 to >100 g C m−2 y−1) are 5–6 times higher than average boreal C accumulation rates, indicating that peat C accumulation rates can remain substantially elevated for much more than a century following thaw. The low apparent C accumulation for the formerly forested, permafrost peat (<5 g C m−2 y−1) may suggest that C accumulation increases substantially following thaw, but it remains unknown whether deep peat C loss occurred immediately following thaw. Well-preserved Sphagnum peat dominates during this period of rapid accumulation, except for an interval from ~400 to 275 cal y BP which alternates between Sphagnum and vascular plant-dominated peat and wetter, minerotrophic conditions. A decline in Picea pollen during this interval and again ~100 cal y BP suggests a decrease in suitable substrate for tree growth likely attributable to thermokarst expansion on the collapse-scar margin. These findings suggest that the combined effects of fire and thermokarst will result in a long-term reduction of spruce ecosystems in interior Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Anderson L, Abbott MB, Finney BP, Burns SJ. 2005. Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat. Res. 64:21–35.

    Article  Google Scholar 

  • Arlen-Pouliot Y, Bhiry N. 2005. Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Quebec, Canada. Holocene 15:408–19.

    Article  Google Scholar 

  • Barclay DJ, Wiles GC, Calkin PE. 2009. Holocene glacier fluctuations in Alaska. Quat. Sci. Rev. 28:2034–48.

    Article  Google Scholar 

  • Barrett K, McGuire AD, Hoy EE, Kasischke ES. 2011. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity. Ecol Appl 21:2380–96.

    Article  PubMed  CAS  Google Scholar 

  • Bauer IE, Bhatti JS, Cash KJ, Tarnocai C, Robinson SD. 2006. Developing statistical models to estimate the carbon density of organic soils. Can J Soil Sci 86:295–304.

    Article  CAS  Google Scholar 

  • Beck PSA, Goetz SJ, Mack MC, Alexander HD, Jin Y, Randerson JT, Loranty MM. 2011. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob Change Biol 17:2853–66.

    Article  Google Scholar 

  • Beilman DW, Vitt DH, Halsey LA. 2001. Localized permafrost peatlands in western Canada: definitions, distribution, and degradation. Arct Antarct Alp Res 33:70–7.

    Article  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR. 1999. Controls on CH4 emissions from a northern peatland. Global Biogeochem Cycles 13(1):81–91.

    Article  CAS  Google Scholar 

  • Bird BW, Abbott MB, Finney BP, Kutchko B. 2009. A 2000-year varve-based record from the central Brooks Rage, Alaska. J Paleolimnol 41:25–41.

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Change Biol 16:1296–305.

    Article  Google Scholar 

  • Booth RK. 2008. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. J Quat Sci 23:43–57.

    Article  Google Scholar 

  • Booth RK, Lamentowicz M, Charman DJ. 2010. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7:1–7.

    Google Scholar 

  • Calkin PE, Ellis JM. 1984. Development and application of a lichenometric dating curve, Brooks Range, Alaska. In: Mahaney WC, Ed. Quaternary dating methods. Amsterdam: Elsevier. p 227–46.

    Chapter  Google Scholar 

  • Camill P. 1999. Peat accumulation and succession following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecoscience 6:592–602.

    Google Scholar 

  • Camill P, Lynch JA, Clark JS, Adams JB, Jordan B. 2001. Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–78.

    Article  Google Scholar 

  • Chaco EF, Arcone SA, Delaney AJ. 1995. Blair Lakes target facility permafrost and groundwater study. Hanover: U.S. Army Cold Regions Research and Engineering Laboratory. p 30.

    Google Scholar 

  • Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Romanowicz EH, Lazrus A. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim Cosmochim Acta 59:3663–8.

    Article  CAS  Google Scholar 

  • Chanton JP, Glaser PH, Chasar LS, Burdige DJ, Hines ME, Siegel DI, Tremblay LB, Cooper WT. 2008. Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochem Cycles 22. doi:10.1029/2008GB003274.

  • Chapin FS III, Viereck LA, Adams PC, Van Cleve K, Fasie CL, Ott RA, Mann D, Johnstone JF. 2006. Successional processes in the Alaskan Boreal Forest. In: Chapin FS III, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL, Eds. Alaska’s Changing Boreal Forest, New York: Oxford University Press, pp 100–20.

  • Charman DJ, Hendon D, Packman S. 1999. Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: indications for Holocene paleoclimate records. J Quat Sci 14:451–63.

    Article  Google Scholar 

  • Charman DJ, Gehrels WR, Manning C, Sharma C. 2010. Reconstruction of recent sea-level change using testate amoebae. Quat Res 73:208–19.

    Article  CAS  Google Scholar 

  • Clegg BF, Hu FS. 2010. An oxygen-isotope record of Holocene climate change in the Brooks Range, Alaska. Quat Sci Rev 29:928–39.

    Article  Google Scholar 

  • Dean WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–8.

    CAS  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn SP, Swar E, van de Weg M, Callaghan TV, Aerts R. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–20.

    Article  CAS  Google Scholar 

  • Edwards ME, Mock CJ, Finney BP, Barber VA, Bartlein PJ. 2001. Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric-circulation controls of regional temperature and moisture responses. Quat Sci Rev 20:189–202.

    Article  Google Scholar 

  • Faegri K, Iverson J. 1989. Textbook of pollen analysis. Chichester: Wiley.

    Google Scholar 

  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM. 2009. Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507.

    Article  Google Scholar 

  • Frolking S, Roulet NT. 2007. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob Change Biol 13:1079–88.

    Article  Google Scholar 

  • Grimm EC. 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35.

    Article  Google Scholar 

  • Guo L, MacDonald RW. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (d13C, d14C, and d15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochem Cycles 20:GB2011. doi:10.1029/2005BG002593.

  • Harden JW, Manies KL, Neff JC, Turetsky MR. 2006. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Glob Change Biol 12:1–13. doi:10.1111/j.1365-2486.2006.01255.x.

    Article  Google Scholar 

  • Hendon D, Charman DJ. 1997. The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. Holocene 7:199–205.

    Article  Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Brown TA, Hu FS. 2009. Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monographs 79:201–19.

    Article  Google Scholar 

  • Hu FS, Ito E, Brown TA, Curry BB, Engstrom DR. 2001. Pronounced climatic variations during the last two millennia in the Alaska Range. Proc Natl Acad Sci USA 98:10552–6.

    Article  PubMed  CAS  Google Scholar 

  • Ise T, Dunn AL, Wofsy SC, Moorcroft PR. 2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–6.

    Article  CAS  Google Scholar 

  • Johnstone JF, Hollingsworth TN, Chapin FS III, Mack MC. 2010. Changes in fire regime break the legacy on successional trajectories in Alaskan boreal forest. Glob Change Biol 16:1281–95.

    Article  Google Scholar 

  • Jorgenson MT, Osterkamp TE. 2005. Response of boreal ecosystems to varying modes of permafrost degradation. Can J For Res 35:2100–11.

    Article  Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. 2001. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48:551–79.

    Article  CAS  Google Scholar 

  • Kane ES, Turetsky MR, Harden JW, McGuire AD, Waddington JM. 2010. Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen in a boreal-rich fen. J Geophys Res 115:G04012. doi:10.1029/2010JG001366.

    Article  Google Scholar 

  • Kasischke E, Turetsky MR. 2006. Recent changes in the fire regime of boreal North America. Geophys Res Lett 33. doi:10.1029/2006GL025677.

  • Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, Arctic Lakes 2k Project Members. 2009. Recent warming reverses long-term arctic cooling. Science 325:1236–9.

    Article  PubMed  CAS  Google Scholar 

  • Mann DH, Heiser PA, Finney BP. 2002. Holocene history of the Great Kobuk sand dunes, northwestern Alaska. Quat Sci Rev 21:709–31.

    Article  Google Scholar 

  • Markel ER, Booth RK, Qin Y. 2010. Testate amoebae and δ13C of Sphagnum as surface-moisture proxies in Alaskan peatlands. Holocene 20:1–13.

    Article  Google Scholar 

  • McCune B, Mefford MJ. 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5. MjM Software, Gleneden Beach, Oregon, USA.

  • Myers-Smith IH, McGuire AD, Harden JW, Chapin FS III. 2007. Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest. J Geophys Res 112:G04017. doi:10.1029/2007JG000423.

    Article  Google Scholar 

  • Myers-Smith IH, Harden JW, Wilmking M, Fuller CC, McGuire AD, Chapin FS III. 2008. Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences 5:1273–86.

    Article  CAS  Google Scholar 

  • Neff JC, Finlay JC, Zimov SA, Davydov SP, Carrasco JJ, Schuur EAG, Davydova AI. 2006. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33:L23401. doi:10.1029/2006GL028222.

    Article  Google Scholar 

  • O’Donnell JA, Harden JW, McGuire AD, Kanevskiy MZ, Jorgenson MT, Xu X. 2011. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem on interior Alaska: implications for post-thaw carbon loss. Glob Change Biol 17:1461–74.

    Article  Google Scholar 

  • O’Donnell JA, Jorgenson MT, Harden JW, McGuire DA, Kanevskiy MZ, Wickland KP. 2012. Effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15:213–29. doi:10.1007/s10021-011-9504-0.

    Article  Google Scholar 

  • Osterkamp TE, Romanovsky VE. 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost Periglac Process 10:17–37.

    Article  Google Scholar 

  • Osterkamp TE, Viereck LA, Shur Y, Jorgenson MT, Racine C, Doyle A, Boone RD. 2000. Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res 32:303–15.

    Article  Google Scholar 

  • Parsekian AD, Jones BM, Jones M, Grosse G, Walter Anthony K, Slater L. 2011. Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA. Earth Surf Proc Land 36:1889–97. doi:10.1002/esp.2210.

    Google Scholar 

  • Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY. 2007. Global Biogeochem Cycles 21:BG4011. doi:10.1029/2007/GB002934.

  • Reimer, PJ and others. 2009. INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years Cal BP. Radiocarbon 51: 1111-1150.

    Google Scholar 

  • Robinson SD, Moore TR. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochem Cycles 13:591–601.

    Article  CAS  Google Scholar 

  • Robinson SD, Moore TR. 2000. The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arct Antarct Alp Res 32:155–66.

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shikomanov N, Tarnocai C, Venevsy S, Vogel JG, Zimov SA. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–14.

    Article  Google Scholar 

  • Shur YL, Jorgenson MT. 2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost Periglac Process 18:7–19.

    Article  Google Scholar 

  • Sikorski JJ, Kaufman DS, Manley WF, Nolan M. 2009. Glacial-geologic evidence for decreased precipitation during the ‘Little Ice Age’ in the Brooks Range, Alaska. Arct Antarct Alp Res 41:138–50.

    Article  Google Scholar 

  • Stuiver M, Reimer PJ. 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:15–230.

    Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanvosky VE. 2005. Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55:17–26.

    Article  Google Scholar 

  • Tarnocai C. 2006. The effect of climate change on carbon in Canadian peatlands. Global Planet Change 53:222–32.

    Article  Google Scholar 

  • Tolonen K, Turunen J. 1996. Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene 6:171–8.

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH. 2000. Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:379–92.

    Google Scholar 

  • Turetsky MT, Wieder RK, Vitt DH. 2002. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–12.

    Article  CAS  Google Scholar 

  • Turetsky MT, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasiskchke ES. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4:27–31. doi:10.1038/NGEO1027.

    Article  CAS  Google Scholar 

  • Wendler G, Shulski M. 2009. A century of climate change for Fairbanks, Alaska. Arctic 62:295–300.

    Google Scholar 

  • Wickland KP, Striegl RG, Neff JC, Sachs T. 2006. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland. J Geophys Res 111:G02011. doi:10.1029/2005JG000099.

    Article  Google Scholar 

  • Wieder RK, Scott KD, Kamminga K, Vile MA, Vitt DH, Bone T, Xu B, Benscoter BW, Bhatti JS. 2009. Post-fire carbon balance in boreal bogs of Alberta Canada. Glob Change Biol 15:63–81.

    Article  Google Scholar 

  • Yi S, McGuire AD, Kasischke ES, Harden JW, Manies KL, Mack M, Turetsky MR. 2010. A dynamic organic soil biogeochemical model for analyzing carbon responses in black spruce forests in interior Alaska. J Geophys Res 115:G04015. doi:10.1029/2010JG001302.

  • Yoshikawa K, Hinzman LD. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac Process 14:151–60.

    Article  Google Scholar 

  • Yu Z, Beilman D, Jones MC. 2009. Sensitivity of northern peatland carbon dynamics to Holocene climate change. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater SD, Eds. Carbon cycling in Northern Peatlands. Washington, DC: American Geophysical Union. doi:10.1029/2008GM000822.

  • Zoltai SC. 1993. Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada. Arct Alpine Res 25:240–6.

    Article  Google Scholar 

  • Zoltai SC. 1995. Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP. Geograph Phys Quat 49:45–54.

    Google Scholar 

  • Zoltai SC, Vitt DH. 1990. Holocene climatic change and the distribution of peatlands in western interior Canada. Quat Res 33:231–40.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephanie Hunt and Dominik Wisser for field assistance. Michelle Mack and two anonymous reviewers provided constructive comments that greatly improved the manuscript. This work was supported by National Science Foundation Grant ATM 0628455 (to Z.C.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam C. Jones.

Additional information

Author Contributions

MCJ performed research, analyzed data, and wrote the paper; RKB contributed to data analysis and interpretation; ZY and PF contributed to data analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.C., Booth, R.K., Yu, Z. et al. A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog, Interior Alaska. Ecosystems 16, 1–19 (2013). https://doi.org/10.1007/s10021-012-9592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9592-5

Keywords