Skip to main content

Advertisement

Log in

A Meta-analysis of Climatic and Chemical Controls on Leaf Litter Decay Rates in Tropical Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Although tropical forests occupy a small fraction of the earth’s total land area, they play a disproportionately large role in regulating the global carbon cycle. Yet controls on both primary productivity and decomposition in tropical forests are not well-studied in comparison with temperate forests and grasslands, despite their extreme biogeochemical heterogeneity. To evaluate the relative importance of climate and foliar chemical variables in driving decomposition in tropical forests, I performed a meta-analysis of reported leaf litter decay rates throughout tropical forest ecosystems. Using a model selection procedure based on Akaike’s Information Criterion, I found that temperature and precipitation played little direct role in regulating decomposition rates, except in montane forests where cool temperatures slowed decay. Foliar concentrations of calcium, magnesium, nitrogen, phosphorus, and potassium were important predictors of mass loss rates, although each of these factors explained a very small amount of variance when considered in isolation. The large amount of unexplained variation in decomposition rates observed both within and across tropical forest sites may be due to other factors not explored here, such as soil biota or complex plant secondary chemistry. Carbon cycling in tropical forests seems to be modulated by the availability of multiple nutrients, underscoring the need for additional manipulative experiments to explore patterns of belowground nutrient limitation across the biome. Because models of decomposition developed in temperate ecosystems do not appear to be generalizable to wet tropical forests, new biogeochemical paradigms should be developed to accommodate their unique combination of climatic, edaphic, and biotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–49.

    Article  Google Scholar 

  • Allison S, Vitousek PM. 2004. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36:285–96.

    Google Scholar 

  • Alvarez-Clare S, Mack M. 2011. Influence of precipitation on soil and foliar nutrients across nine Costa Rican forests. Biotropica 43:433–41.

    Article  Google Scholar 

  • Berg B, Davey MP, DeMarco A, Emmet B, Faituri M, Hobbie SE et al. 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100:57–73.

    Article  CAS  Google Scholar 

  • Bonan G. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–9.

    Article  PubMed  CAS  Google Scholar 

  • Borenstein M, Hedges L, Higgins J, Rothstein H. 2009. Introduction to meta-analysis. West Sussex: Wiley.

    Book  Google Scholar 

  • Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–23.

    Article  Google Scholar 

  • Brookshire E, Gerber S, Menge D, Hedin L. 2012. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol Lett 15:9–16.

    Article  PubMed  CAS  Google Scholar 

  • Burnham K, Anderson D. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer.

    Google Scholar 

  • Chadwick O, Derry L, Vitousek P, Huebert B, Hedin L. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–7.

    Article  CAS  Google Scholar 

  • Chapin F, Matson P, Mooney H. 2002. Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Cleveland C, Reed S, Townsend A. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503.

    Article  PubMed  Google Scholar 

  • Cleveland C, Townsend A, Taylor P, Alvarez-Clare S, Bustamante M, Chuyong G. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–47.

    Article  PubMed  Google Scholar 

  • Cleveland C, Wieder W, Reed S, Townsend A. 2010. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–23.

    Article  PubMed  Google Scholar 

  • Coleman DC, Crossley DA, Hendrix PF. 2004. Fundamentals of soil ecology. Burlington: Elsevier Academic Press.

    Google Scholar 

  • Coley P, Barone J. 1996. Herbivory and plant defenses in tropical forests. Ann Rev Ecol Syst 27:305–35.

    Article  Google Scholar 

  • Coq S, Souquet J, Meudec E, Cheynier V, Hättenschwiler S. 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–91.

    Article  PubMed  Google Scholar 

  • Coq S, Weigel J, Butenschoen O, Bonal D, Hättenschwiler S. 2011. Litter composition rather than plant presence affects decomposition of tropical litter mixtures. Plant Soil 343:273–86.

    Article  CAS  Google Scholar 

  • Cornwell W, Cornelissen J, Amatangelo K, Dorrepaal E, Eviner V, Godoy O. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • Couteaux M, Bottner P, Berg B. 1995. Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–6.

    Article  Google Scholar 

  • Cuevas E, Medina E. 1988. Nutrient dynamics within Amazonian forests. Oecologia 76:222–35.

    Article  Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Team LIDET. 2009. Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Chang Biol 15:1339–55.

    Article  Google Scholar 

  • Dorman H, Deans S. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Appl Microbiol 88:308–16.

    Article  CAS  Google Scholar 

  • Galloway J, Dentener F, Capone D, Boyer E, Howarth W. 2004. Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Couteaux M, Roy J, Bonal D. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–75.

    Article  PubMed  Google Scholar 

  • Hättenschwiler S, Jørgensen H. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–63.

    Article  Google Scholar 

  • Hoeksema J, Chaudhary V, Ghering C, Johnson NC, Karst J, Koide R. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407.

    Article  PubMed  Google Scholar 

  • Jobbágy E, Jackson R. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–36.

    Article  Google Scholar 

  • Kaspari M, Yanoviak S. 2009. Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–51.

    Article  PubMed  Google Scholar 

  • Kaspari M, Garcia M, Harms K, Santana M, Wright S, Yavitt J. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43.

    PubMed  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–50.

    Article  Google Scholar 

  • Lawrence C, Neff J, Schimel J. 2009. Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol Biochem 41:1923–34.

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  • Magee L. 1990. R2 measures based on Wald and likelihood ratio joint significance tests. American Statistician 44:250–3.

    Google Scholar 

  • Malhi Y. 2010. The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustain 2:237–44.

    Article  Google Scholar 

  • Malhi Y. 2011. The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75.

    Article  Google Scholar 

  • Manzoni S, Pineiro G, Jackson RB, Jobbagy EG, Kim JH, Proporato A. 2012. Analytical models of soil and litter decomposition: solutions for mass loss and time-dependent decay rates. Soil Biol Biochem 50:66–75.

    Article  CAS  Google Scholar 

  • Marklein A, Houlton B. 2011. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:676–704.

    Google Scholar 

  • Matsumura S, Imai K, Yoshikawa S, Kawada K, Uchibor T. 1990. Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. J Am Oil Chem Soc 67:996–1001.

    Article  CAS  Google Scholar 

  • Melillo J, Aber J, Muratore J. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.

    Article  CAS  Google Scholar 

  • Milton Y, Kaspari M. 2007. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153:163–72.

    Article  PubMed  Google Scholar 

  • O’Day D. 1990. Calcium as an intracellular messenger in eucaryotic microbes. Washington, DC: American Society for Microbiology. p 418.

    Google Scholar 

  • Paoli G, Curran L. 2007. Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems 10:503–18.

    Article  CAS  Google Scholar 

  • Perakis S, Maguire D, Bullen T, Cromack K, Waring R, Boyle J. 2006. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range. Ecosystems 9:63–74.

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, R Development Core Team. 2009. nlme: Linear and nonlinear mixed effect models. R Package Version 2.9.0

  • Porder S, Hilley G. 2011. Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes. Biogeochemistry 102:153–66.

    Article  CAS  Google Scholar 

  • Powers J, Montgomery R, Adair E, Brearley F, Dewalt S, Castanho C. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–11.

    Article  CAS  Google Scholar 

  • Prescott CE. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–49.

    Article  CAS  Google Scholar 

  • Reed S, Cleveland C, Townsend A. 2007. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–92.

    Article  Google Scholar 

  • Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J. 2010. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol 189:967–77.

    Article  PubMed  Google Scholar 

  • Santiago L, Schuur E, Silvera K. 2005. Nutrient cycling and plant–soil feedbacks along a precipitation gradient in lowland Panama. J Trop Ecol 21:461–70.

    Article  Google Scholar 

  • Santiago L. 2007. Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–31.

    Article  PubMed  Google Scholar 

  • Schimel J, Weintraub M. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–63.

    Article  CAS  Google Scholar 

  • Schuur E. 2001. The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4:259–73.

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–19.

    Google Scholar 

  • Sinsabaugh R, Antibus R, Linkins A, McClaugherty C, Rayburn L, Repert D. 1992. Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biol Biochem 24:743–9.

    Article  CAS  Google Scholar 

  • Sinsabaugh R, Hill B, Shah J. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–8.

    Article  PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Berkeley: University of California Press.

    Google Scholar 

  • Swift M, Andren O, Brussaard L, Briones M, Couteaux M, Ekschmitt K. 1998. Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Glob Chang Biol 4:729–43.

    Article  Google Scholar 

  • Symonds M, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21.

    Article  Google Scholar 

  • Tanner E, Vitousek P, Cuevas E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22.

    Article  Google Scholar 

  • Thomma B, Cammue B, Thevissen K. 2002. Plant defensins. Planta 216:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Townsend A, Asner G, Cleveland C. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–31.

    Article  PubMed  Google Scholar 

  • Townsend A, Cleveland C, Houlton B, Alden C, White J. 2011. Multi-element regulation of the tropical forest carbon cycle. Frontiers Ecol Environ 9:9–17.

    Article  Google Scholar 

  • Trofymow J, Moore T, Titus B, Prescott C, Morrison I, Siltanen M. 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804.

    Article  Google Scholar 

  • Vitousek PM. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–98.

    Article  CAS  Google Scholar 

  • Walker T, Syers J. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    Article  CAS  Google Scholar 

  • Wall D, Bradford M, John M, Trofymow J, Behan-Pelletier V, Bignell D. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Chang Biol 14:2661–77.

    Google Scholar 

  • Wieder W, Cleveland C, Townsend A. 2009. Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–41.

    Article  PubMed  Google Scholar 

  • Wright S, Yavitt J, Wurzburger N, Turner B, Tanner E, Sayer E. 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–25.

    Article  PubMed  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93.

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to C. Averill, C. Hawkes, B. Sikes, and two anonymous reviewers for thoughtful comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie G. Waring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waring, B.G. A Meta-analysis of Climatic and Chemical Controls on Leaf Litter Decay Rates in Tropical Forests. Ecosystems 15, 999–1009 (2012). https://doi.org/10.1007/s10021-012-9561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9561-z

Keywords

Navigation