, Volume 15, Issue 6, pp 974–985 | Cite as

Rainfall-Driven Amplification of Seasonal Acidification in Poorly Buffered Tropical Streams

  • Gaston E. Small
  • Marcelo Ardón
  • Alan P. Jackman
  • John H. Duff
  • Frank J. Triska
  • Alonso Ramírez
  • Marcía Snyder
  • Catherine M. Pringle


Acidification in freshwater ecosystems has important ecological and biogeochemical effects. Temperate streams affected by anthropogenic acidification have been extensively studied, but our understanding of natural acidification in tropical streams has been constrained by the lack of long-term datasets. Here, we analyze 14 years of monthly observations from 13 sampling stations in eight tropical streams in lowland Costa Rica. Stream pH increased during the 4-month dry season and declined throughout the wet season. The magnitude of the seasonal pH decline was greatest following the driest dry seasons, including the historically large El Niño Southern Oscillation event in 1998 when pH values dropped below 4.0 in some streams. Dissolved CO2 accounts for the low baseline pH in the poorly buffered study streams, and we hypothesize that an influx of soil-derived CO2 via subsurface flow paths contributes to the observed seasonal pH declines. Our results show tight coupling between rainfall, terrestrial, and aquatic ecosystems in the tropics. Predicted decreases in dry season rainfall for the tropics may lead to an increased magnitude of seasonal acidification.


acidification carbonic acid climate CO2 El Niño stream tropical 

Supplementary material

10021_2012_9559_MOESM1_ESM.doc (588 kb)
Supplementary material 1 (DOC 588 kb)
10021_2012_9559_MOESM2_ESM.doc (1.1 mb)
Supplementary material 2 (DOC 1085 kb)


  1. Buffam I, Laudon H, Temnerud J, Mörth CM, Bishop K. 2007. Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. J Geophys Res Biogeosci 112:G01022. doi:10.1029/2006JG000218.CrossRefGoogle Scholar
  2. Clark DA, Piper SC, Keeling CD, Clark DB. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Science of the United States of America 107:5852–7.CrossRefGoogle Scholar
  3. Clark JM, Chapman PJ, Adamson JK, Lane SN. 2005. Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Change Biol 11:791–809.CrossRefGoogle Scholar
  4. Clark DB, Clark DA, Oberbauer SF. 2010. Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–59.CrossRefGoogle Scholar
  5. Courtney LA, Clements WH. 1998. Effects of acidic pH on benthic macroinvertebrate communities in stream microcosms. Hydrobiologia 379:135–45.CrossRefGoogle Scholar
  6. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu Rev Marine Sci 1:169–92.CrossRefGoogle Scholar
  7. Eimers MC, Watmough SA, Buttle JM, Dillon PJ. 2008. Examination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining stream. Glob Change Biol 14:938–48.CrossRefGoogle Scholar
  8. Eklund TJ, McDowell WH, Pringle CM. 1997. Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica. Atmos Environ 31:3903–10.CrossRefGoogle Scholar
  9. Erlandsson M, Laudon H, Fölster J. 2010. Spatiotemporal patterns of drivers of episodic acidification in Swedish streams and their relationships to hydrometeorological factors. Sci Total Environ 408:4633–43.PubMedCrossRefGoogle Scholar
  10. Espeleta JF, Clark DA. 2007. Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecol Monogr 77:377–404.CrossRefGoogle Scholar
  11. Fabry VJ, Seibel BA, Feely RA, Orr JC. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–32.CrossRefGoogle Scholar
  12. Flett RJ, Hamilton RD, Campbell NER. 1976. Aquatic acetylene-reduction techniques: solutions to several problems. Can J Microbiol 22:43–51.PubMedCrossRefGoogle Scholar
  13. Galloway JN, Likens GE, Edgerton ES. 1976. Acid precipitation in the Northeastern United States: pH and acidity. Science 194:722–4.PubMedCrossRefGoogle Scholar
  14. Genereux DP, Jordan M. 2006. Interbasin groundwater flow and groundwater interaction with surface water in a lowland rainforest, Costa Rica: a review. J Hydrol 320:385–99.CrossRefGoogle Scholar
  15. Genereux DP, Pringle CM. 1997. Chemical mixing model of streamflow generation at La Selva Biological Station, Costa Rica. J Hydrol 199:319–30.CrossRefGoogle Scholar
  16. Genereux DP, Wood SJ, Pringle CM. 2002. Chemical tracing of interbasin groundwater transfer in the lowland rainforest of Costa Rica. J Hydrol 258:163–78.CrossRefGoogle Scholar
  17. Genereux DP, Jordan MT, Carbonell D. 2005. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica. Water Resour Res 41:W04011. doi:10.1029/2004WR003635.CrossRefGoogle Scholar
  18. Genereux DP, Webb M, Soloman DK. 2009. Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: evidence from carbon, helium, and chlorine. Water Resour Res 45:W08413. doi:10.1029/2008WR007630.CrossRefGoogle Scholar
  19. Hall RJ, Likens GE, Fiance SB, Hendrey GR. 1980. Experimental acidification in the Hubbard Brook experimental forest, New Hampshire. Ecology 61:976–89.CrossRefGoogle Scholar
  20. Johnson MS, Weiler M, Couto EG, Riha SJ, Lehmann J. 2007. Storm pulses of dissolved CO2 in a forested Amazonian stream explored using hydrograph separation. Water Resour Res 43:W11201. doi:10.1029/2007WR006359.CrossRefGoogle Scholar
  21. Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto JPHB, Couto EG. 2008. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401.CrossRefGoogle Scholar
  22. Kleber M, Schwendenmann L, Veldkamp E, Rossner J, Jahn R. 2007. Halloysite versus gibbsite: silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138:1–11.CrossRefGoogle Scholar
  23. Laudon H, Dillon PJ, Eimers MC, Semkin RG, Jeffries DS. 2004. Climate-induced episodic acidification of streams in Central Ontario. Environ Sci Technol 38:6009–15.PubMedCrossRefGoogle Scholar
  24. Likens GE, Bormann FH. 1995. Biogeochemistry of a forested ecosystem. 2nd edn. New York: Springer.CrossRefGoogle Scholar
  25. Likens GE, Bormann FH, Johnson NM. 1972. Acid rain. Environment 14:33–40.CrossRefGoogle Scholar
  26. Markewitz D, Davidson EA, Figueiredo RO, Victoria RL, Krusche AV. 2001. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410:802–5.PubMedCrossRefGoogle Scholar
  27. Marotta H, Duarte CM, Pinho L, Enrich-Prast A. 2010. Rainfall leads to increased pCO2 in Brazilian coastal lakes. Biogeosciences 7:1607–14.CrossRefGoogle Scholar
  28. Milly PCD, Dunne KA, Vecchia AV. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–50.PubMedCrossRefGoogle Scholar
  29. Min SK, Zhang XB, Zwiers FW, Hegerl GC. 2011. Human contribution to more-intense precipitation extremes. Nature 470:376–9.CrossRefGoogle Scholar
  30. Niyogi DK, Lewis WM, McKnight DM. 2002. Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–67.Google Scholar
  31. Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW. 2000. Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–8.CrossRefGoogle Scholar
  32. Norton SA, Fernandez IJ, Kahl JS, Rustad LE, Navrátil T, Almquist H. 2010. The evolution of the science of Bear Brook Watershed in Maine, USA. Environ Monit Assess 171:3–21.PubMedCrossRefGoogle Scholar
  33. Oh NH, Richter DD. 2004. Soil acidification induced by elevated atmospheric CO2. Glob Change Biol 10:1936–46.CrossRefGoogle Scholar
  34. Oliver BG, Thurman EM, Malcom RL. 1983. The contribution of humic substances to the acidity of colored natural waters. Geochim Cosmochim Acta 47:2031–5.CrossRefGoogle Scholar
  35. Pringle CM, Triska FJ. 1991. Effects of geothermal waters on nutrient dynamics of a lowland Costa Rican stream. Ecology 72:951–65.CrossRefGoogle Scholar
  36. Pringle CM, Triska FJ. 2000. Emergent biological patterns in streams resulting from surface-subsurface water interactions at landscape scales. In: Jones JB, Mulholland PJ, Eds. Streams and groundwaters. San Diego: Academic Press. p 167–93.CrossRefGoogle Scholar
  37. Pringle CM, Rowe GL, Triska FJ, Fernandez JF, West J. 1993. Landscape linkages between geothermal activity and solute composition and ecological response in surface waters draining the Atlantic slope of Costa Rica. Limnol Oceanogr 38:753–74.CrossRefGoogle Scholar
  38. Ramírez A, Pringle CM, Douglas M. 2006. Temporal and spatial patterns in stream physicochemistry and insect assemblages in tropical lowland streams. J N Am Benthol Soc 25:108–23.CrossRefGoogle Scholar
  39. Rauscher SA, Giorgi F, Diffembaugh NS, Seth A. 2008. Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–71.CrossRefGoogle Scholar
  40. Rosemond AD, Reice SR, Elwood JW, Mulholland PJ. 1992. The effects of stream acidity on benthic invertebrates communities in the south-eastern United States. Freshw Biol 27:193–209.CrossRefGoogle Scholar
  41. Sanford RL, Paaby P, Luvall JC, Phillips E. 1994. Climate, geomorphology, and aquatic systems. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorne GS, Eds. La Selva: ecology and natural history of a neotropical rainforest. Chicago: University of Chicago Press. p 19–33.Google Scholar
  42. Schwendenmann L, Veldkamp E. 2005. The role of dissolved organic carbon, dissolved organic nitrogen and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8:339–51.CrossRefGoogle Scholar
  43. Schwendenmann L, Veldkamp E. 2006. Long-term CO2 production from deeply weathered soils of a tropical rain forest: evidence for a potentially positive feedback to climate warming. Glob Change Biol 12:1–16.CrossRefGoogle Scholar
  44. Sollins P, Sancho MF, Mata CR, Sanford RL. 1994. Soils and soil process research. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorne GS, Eds. La Selva: ecology and natural history of a neotropical rainforest. Chicago: University of Chicago Press. p 19–33.Google Scholar
  45. Stumm W, Morgan JJ. 1996. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd edn. New York: Wiley.Google Scholar
  46. Sutcliffe DW, Carrick TR. 1973. Studies on mountain streams in the English Lake District I. pH, calcium and the distribution of invertebrates in the River Dudden. Freshw Biol 3:437–62.CrossRefGoogle Scholar
  47. Triska FJ, Pringle CM, Duff JH, Avanzino RJ, Ramírez A, Ardón M, Jackman AP. 2006. Soluble reactive phosphorus transport and retention in tropical, rainforest streams draining a volcanic and geothermally active landscape in Costa Rica: long-term concentration patterns, pore water environment, and response to ENSO events. Biogeochemistry 81:131–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gaston E. Small
    • 1
  • Marcelo Ardón
    • 2
  • Alan P. Jackman
    • 3
  • John H. Duff
    • 3
  • Frank J. Triska
    • 3
  • Alonso Ramírez
    • 4
  • Marcía Snyder
    • 5
  • Catherine M. Pringle
    • 5
  1. 1.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of BiologyEast Carolina UniversityGreenvilleUSA
  3. 3.Water Resources DivisionU.S. Geological SurveyMenlo ParkUSA
  4. 4.Institute for Tropical Ecosystem StudiesUniversity of Puerto RicoSan JuanUSA
  5. 5.Odum School of EcologyUniversity of GeorgiaAthensUSA

Personalised recommendations