Skip to main content

Advertisement

Log in

Soil Calcium and Forest Birds: Indirect Links Between Nutrient Availability and Community Composition

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Calcium is an important nutrient that can be limiting in many forest ecosystems, where acid deposition and other natural and anthropogenic activities have resulted in significant soil calcium depletion. Calcium’s critical role in physiological and structural processes and its limited mobility and storage in many organisms, make it a potential driver of ecosystem structure and function, but little is known about how changes in soil calcium affect community composition, especially in terrestrial vertebrates. The aim of this study was to establish relationships between the abundances of forest songbird species and soil calcium and to elucidate linking mechanisms by establishing simultaneous relationships with trophic and habitat variables. We measured soil calcium and pH, calcium-rich invertebrate abundances, vegetation, and songbird abundances at 14 interior forest sites across central Pennsylvania representing a range of soil calcium levels. Bird community composition varied with soil calcium and pH, with 10 bird species having the highest abundances in forests with high calcium soils, and five species having the highest abundances with low calcium soils. Bird species associated with low-calcium soils were associated with high densities of mountain laurel (Kalmia latifolia), an acid-loving shrub, whereas bird species associated with high-calcium soils were associated with high densities of saplings and high basal area of acid-sensitive tree species. Homogenization of soil conditions through land-use patterns and soil calcium depletion pose the risk of reducing the beta diversity of bird species across forest areas because community composition varied with soil calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams MB, Burger JA, Jenkins AB, Zelazny L. 2000. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests. For Ecol Manage 138:301–19.

    Article  Google Scholar 

  • Bailey SW, Horsley SB, Long RP. 2005. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Sci Soc Am J 69:681–90.

    Article  CAS  Google Scholar 

  • Bell JL, Whitmore RC. 2000. Bird nesting ecology in a forest defoliated by gypsy moths. Wilson Bull 112:524–31.

    Article  Google Scholar 

  • Bigelow SW, Canham CD. 2002. Community organization of tree species along soil gradients in a north-eastern USA forest. J Ecol 90:188–200.

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73:1045–55.

    Article  Google Scholar 

  • Brooks M. 1940. The breeding warblers of the central Allegheny Mountain region. Wilson Bull 52:249–66.

    Google Scholar 

  • Bureš S, Weidinger K. 2003. Sources and timing of calcium intake during reproduction in flycatcher. Oecologia 137:634–47.

    Article  PubMed  Google Scholar 

  • Cody ML. 1981. Habitat selection in birds: the role of vegetation structure, competitors, and productivity. Bioscience 31:107–13.

    Article  Google Scholar 

  • Davies NB. 1977. Prey selection and the search strategy of the Spotted Flycatcher (Muscicapa striata), a field study on optimal foraging. Anim Behav 25:1016–33.

    Article  Google Scholar 

  • Day KC. 1953. Home life of the Veery. Bird-Banding 24:100–6.

    Article  Google Scholar 

  • DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR. 1999. Acid rain impacts on calcium nutrition and forest health. Bioscience 49:789–800.

    Article  Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stodard JL, Weathers KC. 2001. Acidic deposition in the Northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51:180–98.

    Article  Google Scholar 

  • Eckert D, Thomas Sims J. 1995. Recommended soil pH and lime requirement tests. In: Thomas Sims J, Wolf A, Eds. recommended soil testing procedures for the Northeastern United States, Northeast Regional Bulletin #493. Newark, DE: Agricultural Experiment Station, University of Delaware. p 11–6.

  • Ellison WG. 1992. Blue-gray Gnatcatcher (Polioptila caerulea). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/023. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Evans M, Gow E, Roth RR, Johnson MS, Underwood TJ. 2011. Wood Thrush (Hylocichla mustelina). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/246. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Federer CA, Hornbeck JW, Tritton LM, Martin CW, Pierce RS, Smith CT. 1989. Long-term depletion of calcium and other nutrients in eastern US forests. Environ Manage 13:593–601.

    Article  Google Scholar 

  • Fisk MC, Kessler WR, Goodale A, Fahey TJ, Groffman PM, Driscoll CT. 2006. Landscape variation in microarthropod response to calcium addition in a northern hardwood forest ecosystem. Pedobiologia 50:69–78.

    Article  CAS  Google Scholar 

  • Graveland J, van der Wall R. 1996. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines. Oecologia 105:351–60.

    Article  Google Scholar 

  • Graveland J, van der Wall R, van Balen JH, van Noordwijk AJ. 1994. Poor reproduction in forest passerines from decline of snail abundance on acidified soils. Nature 368:446–8.

    Article  Google Scholar 

  • Graveland J, van Gijzen T. 1994. Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea 82:299–314.

    Google Scholar 

  • Grubb Jr. TC, Pravasudov VV. 1994. Tufted titmouse (Baeolophus bicolor). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/086. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Hamburg SP, Yanai RD, Arthur MA, Blum JD, Siccama TG. 2003. Biotic control of calcium cycling in northern hardwood forests: acid rain and aging forests. Ecosystems 6:399–406.

    Article  CAS  Google Scholar 

  • Hames RS, Rosenberg KV, Lowe JD, Barker SE, Dhondt AA. 2002. Adverse effects of acid rain on the distribution of the wood thrush (Hylocichla mustelina) in North America. Proc Natl Acad Sci USA 99:11235–40.

    Article  PubMed  CAS  Google Scholar 

  • Hanners LA, Patton SR. 1998. Worm-eating Warbler (Helmitheros vermivorum). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/367. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Holford KC, Roby DD. 1993. Factors limiting fecundity of captive brown-headed cowbirds. Condor 95:536–45.

    Article  Google Scholar 

  • Holmes RT, Rodenhouse NL, Sillett TS. 2005. Black-throated Blue Warbler (Setophaga caerulescens). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/087. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Horsley SB, Long RP, Bailey SW, Hallett RA, Hall TJ. 2000. Factors associated with the decline disease of sugar maple on the Allegheny Plateau. Can J For Res 30:1365–78.

    Article  CAS  Google Scholar 

  • Hotopp KP. 2002. Land snails and soil calcium in central Appalachian mountain forests. Southeast Nat 1:27–44.

    Article  Google Scholar 

  • Juice SM, Fahey TJ, Siccama TG, Driscoll CT, Denny EG, Eagar C, Cleavitt NL, Minocha R, Richardson AD. 2006. Response of sugar maple to calcium addition to northern hardwood forest. Ecology 87:1267–80.

    Article  PubMed  Google Scholar 

  • Kalisz PJ, Powell JE. 2003. Effects of calcareous road dust on land snails (Gastropods: Pulmonata) and millipedes (Diplopods) in acid forest soils of the Daniel Boone National Forest of Kentucky, USA. For Ecol Manage 186:177–83.

    Article  Google Scholar 

  • Lepš J, Šmilauer P, Eds. 2003. Multivariate analysis of ecological data using CANOCO. New York: Cambridge University Press.

    Google Scholar 

  • Mänd R, Tilgar V, Leivits A. 2000. Reproductive response of Great Tits, Parus major, in a naturally base poor forest habitat to calcium supplements. Can J Zool 75:509–17.

    Google Scholar 

  • Martin TE, Paine CR, Conway CJ, Hochochka WM, Allen P, Jenkins W. 1997. BBIRD field protocol. Montana: Montana Cooperative Wildlife Research Unit, University of Montana, Missoula.

  • McCoy KD. 1999. Sampling terrestrial gastropod communities: using estimates of species richness and diversity to compare two methods. Malacologia 41:271–81.

    Google Scholar 

  • McLaughlin SB, Wimmer R. 1999. Tansley review no. 104: calcium physiology and terrestrial ecosystem processes. New Phytol 142:373–417.

    Article  CAS  Google Scholar 

  • Mesibov R, Taylor RJ, Brereton RN. 1995. Relative efficiency of pitfall trapping and hand-collecting from plots for sampling millipedes. Biodivers Conserv 4:429–39.

    Article  Google Scholar 

  • Nykvist N. 2002. How common are calcium-poor soils in the tropics? Ambio 31:445–7.

    Google Scholar 

  • Økland RH. 1999. On the variation explained by ordination and constrained ordination axes. J Veg Sci 10:131–6.

    Article  Google Scholar 

  • Long RP, Horsley SB, Lilja PR. 1997. Impacts of forest liming on growth and crown vigor of sugar maple and associated hardwoods. Can J For Res 27:1560–73.

    Article  CAS  Google Scholar 

  • Pabian SE, Brittingham MC. 2007. Terrestrial liming benefits birds in an acidified forest in the Northeast. Ecol Appl 17:2184–94.

    Article  PubMed  Google Scholar 

  • Pabian SE, Brittingham MC. 2011. Soil calcium availability limits forest songbird productivity and density. Auk 128:441–7.

    Article  Google Scholar 

  • Pabian SE, Rummel SM, Sharpe WE, Brittingham MC. 2012. Terrestrial liming as a restoration technique for acidified forest ecosystems. Int J For Res 2012:976809.

    Google Scholar 

  • Pahl R, Winkler DW, Graveland J, Batterman BW. 1997. Songbirds do not create long-term stores of calcium in their legs prior to laying: results from high-resolution radiography. Proc R Soc Lond B 264:239–44.

    Article  Google Scholar 

  • Poole A, Ed. 2009. The birds of North America Online: http://bna.birds.cornell.edu/BNA/. Ithaca (NY): Cornell Laboratory of Ornithology.

  • R development core team. 2009. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL: http://www.R-project.org.

  • Rummel SM. 2006. Short-term effects of forest liming on soil chemistry and terrestrial macroinvertebrates. MS Thesis. University Park (PA): The Pennsylvania State University.

  • Schlender M, Skibbe A, Kappes H, Topp W. 2007. Complex responses of songbirds to soil acidification of managed beech forests in central Europe. Ecosystems 10:579–87.

    Article  CAS  Google Scholar 

  • Seagle SW, Sturtevant BR. 2005. Forest productivity predicts invertebrate biomass and Ovenbird (Seiurus aurocapillus) reproduction in Appalachian landscapes. Ecology 86:1531–9.

    Article  Google Scholar 

  • Sharpe WE, Swistock BR, DeWalle DR. 1993. A greenhouse study of northern red oak seedling growth on two forest soils at different stages of acidification. Water Air Soil Pollut 66:121–33.

    Article  CAS  Google Scholar 

  • Sherry TW, Holmes RT. 1997. American Redstart (Setophaga ruticilla). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/277. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Simkiss K, Ed. 1967. Calcium in reproductive physiology. London and New York: Chapman and Hall.

    Google Scholar 

  • Skeldon MA, Vadeboncoeur MA, Hamburg SP, Blum JD. 2007. Terrestrial gastropod responses to an ecosystem-level calcium manipulation in a northern hardwood forest. Can J Zool 85:994–1007.

    Article  Google Scholar 

  • Stenger J. 1958. Food habits and available food of ovenbirds in relation to territory size. Auk 75:335–46.

    Google Scholar 

  • ter Braak CJF, Šmilauer P. 2002. CANOCO version 4.5 biometrics. Wageningen: Plant Research International.

  • ter Braak CJF, Verdonschot PFM. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–89.

    Article  Google Scholar 

  • Tilgar V, Mänd R, Magi M. 2002. Calcium shortage as a constraint on reproduction in great tits Parus major: a field experiment. J Avian Biol 33:407–13.

    Article  Google Scholar 

  • Urban DL, Smith TM. 1989. Microhabitat pattern and the structure of forest bird communities. Am Nat 133:811–29.

    Article  Google Scholar 

  • Wasson MF. 2002. Causes and consequences of calcium limitation in breeding passerine birds. PhD Dissertation. Ithaca (NY): Cornell University.

  • Wherry ET. 1920. Observations on the soil acidity of Ericaceae and associated plants in the Middle Atlantic States. Proc Acad Natl Sci Phila 72:84–111.

    Google Scholar 

  • Whitehead DR, Taylor, T. 2002. Acadian Flycatcher (Empidonax virescens). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/614. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Winkler DW, Hallinger KK, Ardia DR, Robertson RJ, Stutchbury BJ, Cohen RR. 2011. Tree Swallow (Tachycineta bicolor). In: Poole A, Ed. The birds of North America Online: http://bna.birds.cornell.edu/bna/species/011. Ithaca (NY): Cornell Laboratory of Ornithology.

  • Wolf AM, Beegle DB. 1995. Recommended soil tests for macronutrients: phosphorus, potassium, calcium, and magnesium. In: Thomas Sims J, Wolf A, Eds. Recommended soil testing procedures for the Northeastern United States. Northeast Regional Bulletin #493. Newark (DE): Agricultural Experiment Station, University of Delaware. p 25–34.

  • Woods AJ, Omernik JM, Brown DD. 1999. Level III and IV ecoregions of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia. Corvallis (OR): U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory.

Download references

Acknowledgments

The authors thank W. Tzilkowski and E. Smithwick for their advice, and D. Behrend, S. Chiavacci, C. Coverstone, D. Grear, J. Kauffman, T. Keller, P. Manning, L. Sisitki, G. Stokke, E. Stuber, T. Weidman, and T. Wertz for assistance in the field. Funding was provided by the Pennsylvania’s Wild Resource Conservation Program, and the Pennsylvania State University Agricultural Experiment Station. The use of field sites for this study was permitted by the PA Department of Conservation and Natural Resources and the PA Game Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Pabian.

Additional information

Author Contributions

Both authors contributed to all stages of this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabian, S.E., Brittingham, M.C. Soil Calcium and Forest Birds: Indirect Links Between Nutrient Availability and Community Composition. Ecosystems 15, 748–760 (2012). https://doi.org/10.1007/s10021-012-9543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9543-1

Keywords

Navigation