Skip to main content

Advertisement

Log in

Meta-analysis Shows a Consistent and Strong Latitudinal Pattern in Fish Omnivory Across Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Several studies have demonstrated a latitudinal gradient in the proportion of omnivorous fish species (that is, consumers of both vegetal and animal material) in marine ecosystems. To establish if this global macroecological pattern also exists in fresh and brackish waters, we compared the relative richness of omnivorous fish in freshwater, estuarine, and marine ecosystems at contrasting latitudes. Furthermore, we sought to determine the main environmental correlates of change in fish omnivory. We conducted a meta-analysis of published data focusing on change in the relative richness of omnivorous fishes in native fish communities along a broad global latitudinal gradient, ranging from 41°S to 81.5 N° including all continents except for Antarctica. Data from streams, rivers, lakes, reservoirs, estuaries, and open marine waters (ca. 90 papers covering 269 systems) were analyzed. Additionally, the relationship between the observed richness in omnivory and key factors influencing trophic structure were explored. For all ecosystems, we found a consistent increasing trend in the relative richness of omnivores with decreasing latitude. Furthermore, omnivore richness was higher in freshwaters than in marine ecosystems. Our results suggest that the observed latitudinal gradient in fish omnivory is a global ecological pattern occurring in both freshwater and marine ecosystems. We hypothesize that this macroecological pattern in fish trophic structure is, in part, explained by the higher total fish diversity at lower latitudes and by the effect of temperature on individual food intake rates; both factors ultimately increasing animal food limitation as the systems get warmer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abe SI, Uchida K, Nagumo T, Tanaka J. 2007. Alterations in the biomass-specific productivity of periphyton assemblages mediated by fish grazing. Freshw Biol 52:1486–93.

    Article  Google Scholar 

  • Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity Conservation. Bioscience 58:403–14.

    Article  Google Scholar 

  • Allen AP, Gillooly FJ. 2006. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol Lett 9:947–54.

    Article  PubMed  Google Scholar 

  • Arim M, Bozinovic F, Marquet PA. 2007. On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos 116:1524–30.

    Article  Google Scholar 

  • Arrington DA, Winemiller KO, Loftus WF, Akin S. 2002. How often do fishes “run on empty”? Ecology 83:2145–51.

    Google Scholar 

  • Atkinson D, Sibly R. 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–9.

    Article  PubMed  CAS  Google Scholar 

  • Behrens MD, Lafferty KD. 2007. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Can J Fish Aquat Sci 64:867–73.

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N. 1999. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–74.

    Article  Google Scholar 

  • Bolser RC, Hay ME. 1996. Are tropical plants better defended? Palatability and defenses of temperate vs tropical seaweeds. Ecology 77:2269–86.

    Article  Google Scholar 

  • Boyero L, Pearson RG, Dudgeon D, Ferreira V, Graça MAS, Gessner MO, Boulton AJ, Chauvet E, Yule CM, Albariño RJ, Ramírez A, Helson JE, Callisto M, Arunachalam M, Chará J, Figueroa R, Mathooko JM, Gonçalves JF Jr, Moretti MS, Chará-Serna AM, Davies JN, Encalada A, Lamothe S, Buria LM, Castela J, Cornejo A, Li AOY, M’Erimba C, Villanueva VD, del Carmen Zúñiga M, Swan CM, Barmuta LA. 2011. Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob Ecol Biogeogr 21:134–41.

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89

    Article  Google Scholar 

  • Cardinale BJ. 2011. Biodiversity improves water quality through niche partitioning. Nature 472:86–9.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF, Hogson JR. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–9.

    Article  Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH. 2009. Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92.

    Article  Google Scholar 

  • Currie DJ. 1991. Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49.

    Article  Google Scholar 

  • Day RD, German DP, Manjakasy JM, Farr I, Hansen MJ, Tibbetts IR. 2011. Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J Comp Physiol B 181:603–13.

    Article  PubMed  CAS  Google Scholar 

  • Espinoza R, Wiens J, Tracy C. 2004. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules or reptilian herbivory. Proc Natl Acad Sci USA 101:16819–24.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC. 2004. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr 31:1093–106.

    Article  Google Scholar 

  • Fischer AG. 1960. Latitudinal variations in organic diversity. Evolution 14:64–81.

    Article  Google Scholar 

  • Flecker AS, Taylor BW, Bernhardt ES, Hood JM, Cornwell WK, Cassatt SR, Vanni MJ, Altman NS. 2002. Interactions between herbivorous fishes and limiting nutrients in a tropical stream ecosystem. Ecology 83:1831–44.

    Article  Google Scholar 

  • Floeter S, Behrens M, Ferreira C, Paddack M, Horn M. 2005. Geographical gradients of marine herbivorous fishes: patterns and processes. Mar Biol 147:1435–47.

    Article  Google Scholar 

  • Freestone A, Osman R, Ruiz G, Torchin M. 2011. Stronger predation in tropics shapes species richness patterns in marine communities. Ecology 92:983–93.

    Article  PubMed  Google Scholar 

  • Gaines SD, Lubchenco J. 1982. A unified approach to marine plantherbivore interactions II. Biogeography. Annu Rev Ecol Syst 13:111–38.

    Article  Google Scholar 

  • Hillebrand H. 2004. On the generality of the latitudinal diversity gradient. Am Nat 163:192–211.

    Article  PubMed  Google Scholar 

  • Hixon MA, Brostoff WN. 1996. Succession and herbivory: effects of differential fish grazing on hawaiian coral-reef algae. Ecol Monogr 66:67–90.

    Article  Google Scholar 

  • Horwitz RJ. 1978. Temporal variability patterns and the distributional patterns of stream fishes. Ecol Monogr 48:307–21.

    Article  Google Scholar 

  • Ibañez C, Belliard J, Hughes RM, Irz P, Khamdem-Tohan A, Lamouroux N, Tedesco PA, Oberdorff T. 2009. Convergence of temperate and tropical fish assemblages. Ecography 32:658–70.

    Article  Google Scholar 

  • Jansson R, Dynesius M. 2002. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33:741–77.

    Article  Google Scholar 

  • Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck S, De Meester L, Søndergaard M, Lauridsen T, Bjerring R, Conde-Porcuna J, Mazzeo N, Iglesias C, Reizenstein M, Malmquist H, Liu Z, Balayla D, Lazzaro X. 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90.

    Article  CAS  Google Scholar 

  • Kissling WD, Sekercioglu CH, Jetz W. 2011. Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob Ecol Biogeogr 21:328–40.

    Article  Google Scholar 

  • Kristensen E, Baattrup-Pedersen A, Andersen H. 2011. Prediction of stream fish assemblages from land use characteristics: implications for cost-effective design of monitoring programmes. Environ Monit Assess 184:1435–48.

    Article  PubMed  Google Scholar 

  • Lowe-McConnell RH. 1975. Fish community in tropical freshwaters: their distribution, ecology and evolution. London: Longman. p 337p.

    Google Scholar 

  • Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MC, Wesselingh F. 1998. The stage for Neotropical fish diversification: a history of tropical South American rivers. In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS, Eds. Phylogeny and classification of Neotropical fishes. Edipucrs: Porto Alegre.

    Google Scholar 

  • Martinez ND. 1994. Scale-dependent constraints on food-web structure. Am Nat 144:935–53.

    Article  Google Scholar 

  • Mccullaugh P, Nelder J. 1989. Generalized linear models. 2nd edn. Boca Raton: Chapman and Hall.

    Google Scholar 

  • Mead GW. 1970. A history of South Pacific fishes. In: Wooster WS, Ed. Scientific explorations of the South Pacific. Washington, DC: National Academy of Sciences. p 236–51.

    Google Scholar 

  • Meekan MG, Choat JH. 1997. Latitudinal variation in abundance of herbivorous fishes: a comparison of temperate and tropical reefs. Mar Biol 128:373–83.

    Article  Google Scholar 

  • Meerhoff M, Clemente JM, Teixeira de Mello F, Iglesias C, Pedersen AR, Jeppesen E. 2007. Can warm climate-related structure of littoral predator assemblies weaken clear water state in shallow lakes? Glob Change Biol 13:1888–97.

    Article  Google Scholar 

  • Meerhoff M, Teixeira-de Mello F, Kruk C, Alonso C, González-Bergonzoni I, Pacheco JP, Arim M, Beklioğlu M, Brucet S, Goyenola G, Iglesias C, Lacerot G, Mazzeo N, Kosten S, Jeppesen E. 2012. Environmental warming in shallow lakes: a review of effects on community structure as evidenced from space-for-time substitution approach. Adv Ecol Res (accepted).

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–31.

    Article  PubMed  Google Scholar 

  • Morrison W, Hay M. 2011. Are lower latitude plants better defended? Palatability of freshwater macrophytes. Ecology. doi:10.1890/11-0725.1.

    Google Scholar 

  • Moss B. 2010. Climate change, nutrient pollution and the bargain of Dr Faustus. Freshw Biol 55:175–87.

    Article  Google Scholar 

  • Naya DE, Bozinovic F, Karasov WH. 2008. Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of rodents. Am Nat 172:122–34.

    Article  Google Scholar 

  • Odum HT. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol Monogr 27:55–112.

    Article  Google Scholar 

  • Pianka E. 1966. Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46.

    Article  Google Scholar 

  • Power ME, Matthews WJ, Stewart AJ. 1985. Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66:1448–56.

    Article  Google Scholar 

  • Pringle CM, Hamazaki T. 1997. Effects of fishes on algal response to storms in atropical stream. Ecology 78:2432–42.

    Google Scholar 

  • Pringle CM, Hamazaki T. 1998. The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology 79:269–80.

    Article  Google Scholar 

  • R. Core development team. 2007. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Rabassa J, Coronato AM, Salemme M. 2005. Chronology of the late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the pampean region (Argentina). J South Am Earth Sci 20:81–103.

    Article  Google Scholar 

  • Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci 101:11001–6.

    Article  PubMed  CAS  Google Scholar 

  • Rezende EL, Bozinovic F, Garland TJ. 2004. Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents. Evolution 58:1361–74.

    PubMed  Google Scholar 

  • Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–27.

    Article  Google Scholar 

  • Romanuk T, Hayward A, Hutchings JA. 2011. Trophic level scales positively with body size in fishes. Glob Ecol Biogeogr 20:231–40.

    Article  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–69.

    Article  Google Scholar 

  • Sugihara G, Schoenly K, Trombla A. 1989. Scale invariance in food web properties. Science 245:48–52.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira-de Mello F, Meerhoff M, Pekcan-Hekim Z, Jeppesen E. 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshw Biol 54:1202–15.

    Article  CAS  Google Scholar 

  • Teixeira-de Mello F, Meerhoff M, Baattrup-Pedersen A, Maigaard T, Kristensen, PB, Andersen TK, Clemente JM, Fosalba C, Kristensen EA, Masdeu M, Riis T, Mazzeo N, Jeppesen E. 2012. Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia 684:143–60.

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130–7.

    Article  Google Scholar 

  • Venables W, Ripley B. 2002. Modern applied statistics with S. 4th edn. New York: Springer.

    Google Scholar 

  • Winemiller KO. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–65.

    Article  Google Scholar 

  • Winemiller KO, Leslie MA. 1992. Fish assemblages across a complex, tropical freshwater/marine ecotone. Environ Biol Fish 34:29–50.

    Article  Google Scholar 

  • Winemiller KO, Kelso-Winemiller LC, Brenkert AL. 1995. Ecomorphological diversification and convergence in fluvial cichlid fishes. Environ Biol Fish 44:235–61.

    Article  Google Scholar 

  • Wooton TJ, Oemke MP. 1992. Latitudinal differences in fish community trophic structure, and the role of fish herbivory in a Costa Rican Stream. Environ Biol Fish 35:311–19.

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS. 2009a. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:1–12.

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Smith GM, Saveliev AA. 2009b. Mixed effects models and extensions in ecology with R. 1st edn. New York: Springer. p 574.

    Book  Google Scholar 

Download references

Acknowledgments

We especially thank Sergio R. Floeter for facilitating data for marine ecosystems, Anne Mette Poulsen for manuscript editing and Tinna Christensen for figure layout, and to David Currie, Janne Soininen and Michael Pace and two anonymous reviewers whose comments greatly improved this manuscript. This project was supported by the EU projects WISER and REFRESH, by CRES, CIRCE, The Danish Council for Independent Research: Natural Sciences (272-08-0406), Greenland Climate Research Centre (GCRC Greenland Climate Research Centre (GCRC), FNU (16-7745), and ANII (National Research and Innovation Agency of Uruguay) FCE 2009-2530 and FCE 2009-2749. IGB, FTM, and MM were supported by SNI-ANII and PEDECIBA (Uruguay). MM was also supported by the national award by L’Oréal-UNESCO for Women in Science, Uruguay (with support of DICyT). TD’s contribution was supported by Marie Curie Intra European Fellowship no. 255180 (PRECISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan González-Bergonzoni.

Additional information

Author Contributions

IGB, MM, and EJ conceived the idea; IGB collected the data, IGB and TD applied the statistical analysis; IGB, MM, and EJ were responsible for the manuscript preparation with the collaboration of TD, FTM, and ABP.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Bergonzoni, I., Meerhoff, M., Davidson, T.A. et al. Meta-analysis Shows a Consistent and Strong Latitudinal Pattern in Fish Omnivory Across Ecosystems. Ecosystems 15, 492–503 (2012). https://doi.org/10.1007/s10021-012-9524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9524-4

Keywords

Navigation