Skip to main content

Advertisement

Log in

Effect of Simulated Climate Change on Soil Respiration in a Mediterranean-Type Ecosystem: Rainfall and Habitat Type are More Important than Temperature or the Soil Carbon Pool

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil respiration (R S) is known to be highly sensitive to different environmental factors, such as temperature, precipitation, and the soil carbon (C) pool. Thus, the scenario of global change expected for the coming decades might imply important consequences for R S dynamics. In addition, all of these factors may have an interactive effect, and the consequences are often confounded. We performed a field experiment to analyze the effect of soil moisture and habitat type on R S in a Mediterranean-type ecosystem by simulating three possible climate scenarios differing in the precipitation amount during summer (drier, wetter, and current precipitation pattern) in the main successional habitats in the area (forest, shrubland, and open habitat). We also considered other factors that would affect R S, such as the soil C pool and microbial biomass. By the use of structural-equation modeling (SEM), we disentangled the interactive effects of the different factors affecting R S. A higher simulated precipitation boosted R S for the different habitats across the sampling period (14.6% higher respect to control), whereas the more severe simulated drought reduced it (19.2% lower respect to control), a trend that was similar at the daily scale. Temperature had, by contrast, scant effects on R S. The SEM analysis revealed a positive effect of moisture and canopy cover on R S, whereas the effect of temperature was weaker and negative. Soil C pool and microbial biomass did not affect R S. We conclude that the precipitation changes expected for the coming decades would play a more important role in controlling R S than would other factors. Thus, the projected changes in the precipitation pattern may have much more profound direct effects on R S than will the projected temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Almagro M, López J, Querejeta JI, Martínez-Mena M. 2009. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605.

    Article  CAS  Google Scholar 

  • Arbuckle JL. 1994. AMOS: analysis of moment structures. Psychometrika 59:135–7.

    Article  Google Scholar 

  • Balogh J, Pintér K, Fóti S, Cserhalmi D, Papp M, Nagy Z. 2011. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol Biochem 43:1006–13.

    Article  CAS  Google Scholar 

  • Bauerle TL, Richards JH, Smart DR, Eissenstat DM. 2008. Importance of internal hydraulic redistribution for prolonging the lifespam of roots in dry soil. Plant Cell Environ 31:177–86.

    PubMed  CAS  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K. 2007. Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95.

    Article  Google Scholar 

  • Bentler PM, Bonnet DG. 1980. Significance tests and goodness-of-fit in the analysis of covariance structures. Psychol Bull 88:588–606.

    Article  Google Scholar 

  • Bey A. 2003. Evapoclimatonomy modelling of four restoration stages following Krakatau’s 1883 destruction. Ecol Modell 169:327–37.

    Article  Google Scholar 

  • Browne MW. 1982. Covariance structures. In: Hawkins DM, Ed. Topics in applied multivariate analysis. Cambridge: Cambridge University Press. p 72–141.

    Chapter  Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–79.

    Article  Google Scholar 

  • Campbell JL, Sun OJ, Law BE. 2004. Supply-side controls on soil respiration among Oregon forests. Glob Change Biol 10:1857–69.

    Article  Google Scholar 

  • Casals P, Gimeno C, Carrara A, Lopez-Sangil L, Sanz MJ. 2009. Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biol Biochem 41:1915–22.

    Article  CAS  Google Scholar 

  • Conant RT, Klopatek JM, Malin RC, Klopatek CC. 1998. Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogechemistry 43:43–61.

    Article  Google Scholar 

  • Curiel-Yuste J, Janssens IA, Carrara A, Ceulemans R. 2004. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob Change Biol 10:161–9.

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–27.

    Article  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.

    Article  PubMed  CAS  Google Scholar 

  • de Dato GD, De Angelis P, Sirca C, Beier C. 2010. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga). Plant Soil 327:153–66.

    Article  CAS  Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP. 1985. Climatic-change and the broad-scale distribution of terrestrial ecosystem complexes. Clim Change 7:29–43.

    Article  Google Scholar 

  • Euskirchen ES, Chen JQ, Gustafson EJ, Ma SY. 2003. Soil respiration at dominant patch types within a managed northern Wisconsin landscape. Ecosystems 6:595–607.

    Article  Google Scholar 

  • Giardina CP, Ryan MG. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–61.

    Article  PubMed  CAS  Google Scholar 

  • Gough CM, Seiler JR. 2004. The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus tadea L.) plantations located on the South Carolina Coastal Plain. For Ecol Manag 191:353–63.

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and estimations. Biogeochemistry 48:115–46.

    Article  CAS  Google Scholar 

  • Harper CW, Blair JM, Fray PA, Knap AK, Carlisle JD. 2005. Increased rainfall variability and reduced rainfall amount decrease soil CO2 flux in a grassland ecosystem. Glob Change Biol 11:322–34.

    Article  Google Scholar 

  • Hayduck LA. 1987. Structural equation modelling with LISREL: essential and advances. Baltimore: John Hopkins University Press.

    Google Scholar 

  • Hibbard KA, Law BE, Reichstein M. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29–70.

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–92.

    Article  PubMed  Google Scholar 

  • Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A. 2009. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Glob Change Biol 15:1289–301.

    Article  Google Scholar 

  • IPCC. 2007. Climate Change, 2007. The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press.

    Google Scholar 

  • Iriondo JM, Albert MJ, Escudero A. 2003. Structural equation modelling: an alternative for assessing causal relationships in threatened plant populations. Biol Conserv 113:367–77.

    Article  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guomundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–78.

    Article  Google Scholar 

  • Jenkinson DS, Powlson DS. 1976. Effects of biocidal treatments on metabolism in soil. 5. Method for measuring soil biomass. Soil Biol Biochem 8:209–13.

    Article  CAS  Google Scholar 

  • Kosmas C, Danalatos NG, López-Bermúdez F, Romero-Díaz MA. 2002. The effect of land use on soil erosion and land degradation under Mediterranean conditions. In: Geeson NA, Brandt CJ, Thornes JB, Eds. Mediterranean desertification: a mosaic of processes and responses. Chichester: Wiley. p 57–70.

    Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the temperature-dependence of soil respiration. Funct Ecol 8:316–23.

    Article  Google Scholar 

  • Luo Y, Zhou X. 2006. Soil respiration and the environment. Oxford: Academic Press.

    Google Scholar 

  • Marañón-Jiménez S, Castro J, Kowalski AS, Serrano-Ortiz P, Reverter BR, Sánchez-Cañete EP, Zamora R. 2011. Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. For Ecol Manag 261:1436–47.

    Article  Google Scholar 

  • Matías L, Mendoza I, Zamora R. 2009. Consistent pattern of habitat and species selection by post-dispersal seed predators in a Mediterranean mosaic landscape. Plant Ecol 203:137–47.

    Article  Google Scholar 

  • Matías L, Castro J, Zamora R. 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Glob Change Biol 17:1646–57.

    Article  Google Scholar 

  • Moncrief JB, Fang C. 1999. A model for CO2 production and transport. 2: application to a Florida Pinus elliottii plantation. Agric For Meteorol 95:237–56.

    Article  Google Scholar 

  • Murphy M, Balser T, Buchmann N, Hahn V, Potvin C. 2008. Linking tree biodiversity to belowground process in a young tropical plantation: impacts on soil CO2 flux. For Ecol Manag 255:2577–88.

    Article  Google Scholar 

  • Phillips CL, Nickerson N, Risk D, Bond BJ. 2011. Interpreting diel hysteresis between soil respiration and temperature. Glob Change Biol 17:515–27.

    Article  Google Scholar 

  • Pyke CR, Andelman SJ. 2007. Land use and land cover tools for climate adaptation. Clim Change 80:239–51.

    Article  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF. 2007. Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol Biochem 39:409–17.

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH. 1992. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B 44:81–99.

    Article  Google Scholar 

  • Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R. 2002. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol 16:27–39.

    Article  Google Scholar 

  • Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, miglietta F, Oechel W, Ourcival JM, Pereira JS, Pressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cycles 17:1–15.

    Article  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R. 2002. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8:851–66.

    Article  Google Scholar 

  • Rey A, Petsikos C, Jarvis PG, Grace J. 2005. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled field conditions. Eur J Soil Sci 56:589–99.

    Article  CAS  Google Scholar 

  • Rodrigo FS. 2002. Changes in climate variability and seasonal rainfall extremes: a case study from San Fernando (Spain), 1821–2000. Theor Appl Climatol 72:193–207.

    Article  Google Scholar 

  • Saito M, Kato T, Tang Y. 2009. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Glob Change Biol 15:221–8.

    Article  Google Scholar 

  • Schimel DS. 1995. Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91.

    Article  Google Scholar 

  • Shen W, Jenerette GD, Hui D, Phillips RP, Ren H. 2008. Effects of changing precipitation regimes on dryland soil respiration and C pool dynamics at rainfall event, seasonal and interannual scales. J Geophys Res 113:G03024.

    Article  Google Scholar 

  • Shen W, Reynolds JF, Hui D. 2009. Responses of dryland soil respiration and soil carbon pool size to abrupt vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob Change Biol 15:2274–94.

    Article  Google Scholar 

  • Shipley B. 2000. Cause and correlation in biology: a user’s guide to path analysis, structural equations, and causal inference. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sparks DL. 1996. Methods of soil analysis. Part 3. Chemical methods. Madison (WI): Soil Science Society of America and American Society of Agronomy.

  • Sponseller RA. 2007. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Change Biol 13:426–36.

    Article  Google Scholar 

  • Talmon Y, Sternberg M, Grünzweig JM. 2011. Impact of rainfall manipulations and biotic controls on soil respiration in Mediterranean and desert ecosystems along an arid gradient. Glob Change Biol 17:1108–18.

    Article  Google Scholar 

  • Tanaka JS, Huba GJ. 1985. A fit index for covariance structure models under arbitrary GLS estimation. Brit J Math Stat Psychol 38:197–201.

    Article  Google Scholar 

  • Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT. 2011. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob Change Biol 17:1505–15.

    Article  Google Scholar 

  • Xu L, Baldocchi DD, Tang J. 2004. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cycles 18:GB4002.

    Article  Google Scholar 

  • Xu M, Qi Y. 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob Change Biol 7:667–77.

    Article  Google Scholar 

  • Yahdjian L, Sala OE. 2002. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133:95–101.

    Article  Google Scholar 

  • Zar JH. 1984. Biostatistical analysis. 2nd edn. London: Prentice-Hall.

    Google Scholar 

  • Zheng D, Chen J, Noormets A, Le Moine J, Euskirchen E. 2005. Effects of climate and land use on landscape soil respiration in northern Wisconsin, 1972–2001. Clim Res 28:163–73.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Consejería de Medio Ambiente (Andalusian Government) and the Direction of the Sierra Nevada National Park for facilities and support to carry out the experiment. We also wish to thank to N. Villegas and L.M. Oviedo for field assistance during measurement campaigns and to S. Marañón and A. Kowalsky for their helpful comments. This study was supported by the coordinated Spanish MEC Project DINAMED (CGL2005-05830-C03), GESBOME (P06-RNM-1890), CONSOLIDER (CSD2008-00040), INIA Project SUM2006-00010-00-00, and by a grant FPI-MEC (BES-2006-13562) to LM. This research is part of the GLOBIMED (www.globimed.net) network in forest ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Matías.

Additional information

Author Contributions

RZ, JC, and LM designed experiment; LM performed research and analyzed the data; LM, JC, and RZ wrote the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matías, L., Castro, J. & Zamora, R. Effect of Simulated Climate Change on Soil Respiration in a Mediterranean-Type Ecosystem: Rainfall and Habitat Type are More Important than Temperature or the Soil Carbon Pool. Ecosystems 15, 299–310 (2012). https://doi.org/10.1007/s10021-011-9509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9509-8

Keywords

Navigation