, Volume 15, Issue 1, pp 140–147 | Cite as

On the Relationship Between Sea Level and Spartina alterniflora Production

  • Matthew L. Kirwan
  • Robert R. Christian
  • Linda K. Blum
  • Mark M. Brinson


A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.


annual productivity marsh biomass wetland ecogeomorphology Virginia LTER 


  1. Alberti J, Casariego AM, Daleo P, Fanjul E, Silliman B, Bertness M, Iribarne O. 2010. Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia 163:181–91.PubMedCrossRefGoogle Scholar
  2. Anthony EJ. 2004. Sediment dynamics and morphological stability of estuarine mangrove swamps in Sherbro Bay, West Africa. Mar Geol 208:207–24.CrossRefGoogle Scholar
  3. Blum LK, Christian RR. 2004. Belowground production and decomposition along a tidal gradient in a Virginia salt marsh. In: Fagherazzi S, Marani M, Blum LK, Eds. The ecogeomorphology of tidal marshes. Washington, DC: American Geophysical Union. Google Scholar
  4. Cahoon DR, Reed DJ. 1995. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. J Coast Res 11:357–69.Google Scholar
  5. Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–105.CrossRefGoogle Scholar
  6. Chalmers AG. 1982. Soil dynamics and the productivity of Spartina alterniflora. In: Kennedy VS, Ed. Estuarine comparisons. New York: Academic Press. p 231–42.Google Scholar
  7. Christian RR, Stasavich L, Thomas C, Brinson MM. 2000. Reference is a moving target in sea-level controlled wetlands. In Weinstein MP, Kreeger DA, Eds. Concepts and controversies in tidal marsh ecology. Dordrecht: Kluwer Press. pp 805–25.Google Scholar
  8. Christiansen, T. 1998. Sediment deposition on a tidal salt marsh. PhD Dissertation, University of Virginia, Charlottesville.Google Scholar
  9. Christiansen T, Wiberg PL, Milligan TG. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuar Coast Shelf Sci 50:315–31.CrossRefGoogle Scholar
  10. D’Alpaos A, Lanzoni S, Marani M, Rinaldo A. 2007. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J Geophys Res 112:F01008.CrossRefGoogle Scholar
  11. D’Alpaos D, Lanzoni S, Mudd SM, Fagherazzi S. 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar Coast Shelf Sci 69:311–24.CrossRefGoogle Scholar
  12. DeLaune RD, Nyman JA, Patrick WH. 1994. Peat collapse, ponding, and wetland loss in a rapidly submerging coastal marsh. J Coast Res 10:1021–30.Google Scholar
  13. De Leeuw J, Olff H, Bakker JP. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquat Bot 36:139–51.CrossRefGoogle Scholar
  14. Erwin RM, Cahoon DR, Prosser DJ, Sanders GM, Hensel P. 2006. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds. Estuar Coast 29:96–106.Google Scholar
  15. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J, Craft C, Rybczyk J, Reyes E, Clough J. 2011. Numerical models of salt marsh evolution: ecological, geomorphic and climatic factors. Rev Geophys. doi:10.1029/2011RG000359.
  16. Friedrichs CT, Perry JE. 2001. Tidal salt marsh morphodynamics: a synthesis. J Coast Res 27:7–37.Google Scholar
  17. Hensel PF, Scott GA, Allen AL, Gill SK, Cahoon DR, Nemerson D, Guntenspergen GR. 2008. Geodetic and tidal datums: tying wetland surface elevation change to local water levels. 2008 Ocean Sciences Meeting Abstract. Orlando (FL): American Geophysical Union.Google Scholar
  18. Hughes ZJ, FitzGerald DM, Wilson CA, Pennings SC, Wieski K, Mahadevan A. 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophys Res Lett 36:L03602. doi:10.1029/2008GL036000.CrossRefGoogle Scholar
  19. Kirwan ML, Guntenspergen GR, Morris JT. 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob Change Biol 15:1982–9.CrossRefGoogle Scholar
  20. Kirwan ML, Murray AB. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci USA 104:6118–22.PubMedCrossRefGoogle Scholar
  21. Kirwan ML, Murray AB, Boyd WS. 2008. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys Res Lett 35:L05403. doi:10.1029/2007GL032681.CrossRefGoogle Scholar
  22. Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401. doi:10.1029/2010GL045489.CrossRefGoogle Scholar
  23. Larsen LG, Harvey JW. 2010. How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands worldwide. Am Nat 176:E66–79.PubMedCrossRefGoogle Scholar
  24. Lorenzo-Trueba J, Voller VR, Paola C, Twilley RR. 2010. Toward a model framework for sedimentary delta growth that accounts for biological processes. Abstract B33D-0427, AGU Fall Meeting, San Francisco.Google Scholar
  25. Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2007. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402. doi:10.1029/2007GL030178.CrossRefGoogle Scholar
  26. Marion C, Anthony EJ, Trentesaux A. 2009. Short-term (≤2 yrs) estuarine mudflat and saltmarsh sedimentation: high-resolution data from ultrasonic altimetry, rod surface-elevation table, and filter traps. Estuar Coast Shelf Sci 83:475–84.CrossRefGoogle Scholar
  27. Mariotti G, Fagherazzi S. 2010. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J Geophys Res 115:F01004. doi:10.1029/2009JF001326.CrossRefGoogle Scholar
  28. McKee KL, Patrick WH Jr. 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: a review. Estuaries 11:143–51.CrossRefGoogle Scholar
  29. Mendelssohn IA, Morris JT. 2000. Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In Weinstein MP, Kreeger DA, Eds. Concepts and controversies in tidal marsh ecology. Dordrecht: Kluwer Press. pp. 805–25.Google Scholar
  30. Morris JT, Haskins B. 1990. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71:2209–17.CrossRefGoogle Scholar
  31. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77.CrossRefGoogle Scholar
  32. Mudd SM, Fagherazzi S, Morris JT, Furbish DJ. 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. In: Fagherazzi S, Marani A, Blum LK, Eds. The ecogeomorphology of tidal marshes. Coastal and estuarine monograph series. Washington, DC: American Geophysical Union. pp. 165–87.Google Scholar
  33. Nicholls RJ and others. 2007. Coastal systems and low-lying areas. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  34. Odum EP, Finn JT, Franz EH. 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29:349–52.CrossRefGoogle Scholar
  35. Osgood DT, Zieman JC. 1998. The influence of subsurface hydrology on nutrient supply and smooth cordgrass (Spartina alternifloa) production in a developing barrier island mash. Estuaries 21:767–83.CrossRefGoogle Scholar
  36. Paramor OAL, Hughes RG. 2004. The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J Appl Ecol 41:449–63.CrossRefGoogle Scholar
  37. Smith SM. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeast Nat 16:183–208.CrossRefGoogle Scholar
  38. Steever EZ, Warren RS, Niering WA. 1976. Tidal energy subsidy and standing crop production of Spartina alterniflora. Estuar Coast Mar Sci 4:473–8.CrossRefGoogle Scholar
  39. Teal JM, Howes BL. 1996. Interannual variability of a saltmarsh ecosystem. Limnol Oceanogr 41:802–9.CrossRefGoogle Scholar
  40. Ursino N, Silvestri S, Marani M. 2004. Subsurface flow and vegetation patterns in tidal environments. Water Resour Res 40:W05115. doi:10.1029/2003WR002702.CrossRefGoogle Scholar
  41. Van de Koppel J, van der Wal D, Bakker JP, Herman PMJ. 2005. Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat 165:E1–12.PubMedCrossRefGoogle Scholar
  42. Visser JM, Sasser CE, Cade BS. 2006. The effect of multiple stressors on salt marsh end-of-season biomass. Estuar Coast 29:328–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matthew L. Kirwan
    • 1
    • 2
  • Robert R. Christian
    • 3
  • Linda K. Blum
    • 2
  • Mark M. Brinson
    • 3
  1. 1.United States Geological Survey, Patuxent Wildlife Research CenterLaurelUSA
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of BiologyEast Carolina UniversityGreenvilleUSA

Personalised recommendations