, Volume 13, Issue 6, pp 917–931 | Cite as

Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests

  • Caren C. Dymond
  • Eric T. Neilson
  • Graham Stinson
  • Kevin Porter
  • David A. MacLean
  • David R. Gray
  • Michel Campagna
  • Werner A. Kurz


Spruce budworm (Choristoneura fumiferana Clem.) is an important and recurrent disturbance throughout spruce (Picea sp.) and balsam fir (Abies balsamea L.) dominated forests of North America. Forest carbon (C) dynamics in these ecosystems are affected during insect outbreaks because millions of square kilometers of forest suffer growth loss and mortality. We tested the hypothesis that a spruce budworm outbreak similar to those in the past could switch a forest from a C sink to a source in the near future. We used a model of ecosystem C to integrate past spruce budworm impact sequences with current forest management data on 106,000 km2 of forest in eastern Québec. Spruce budworm-caused mortality decreased stand-level merchantable C stocks by 11–90% and decreased ecosystem C stocks by 2–10% by the end of the simulation. For the first 13 years (2011–2024), adding spruce budworm significantly reduced ecosystem C stock change for the landscape from a sink (4.6 ± 2.7 g C m−2 y−1 in 2018) to a source (−16.8 ± 3.0 g C m−2 y−1 in 2018). This result was mostly due to reduced net primary production. The ecosystem stock change was reduced on average by 2 Tg C y−1 for the entire simulated area. This study provides the first estimate that spruce budworm can significantly affect the C sink or source status of a large landscape. These results indicate that reducing spruce budworm impacts on timber may also provide an opportunity to mitigate a C source.


carbon cycle net primary production net biome production boreal forest defoliation ecosystem carbon CBM-CFS3 ecosystem stock change 

Supplementary material

10021_2010_9364_MOESM1_ESM.doc (588 kb)
Supplementary material 1 (DOC 588 kb)


  1. Apps MJ, Kurz WA, Beukema SJ, Bhatti JS. 1999. Carbon budget of the Canadian forest product sector. Environ Sci Policy 2:25–41.CrossRefGoogle Scholar
  2. Baskerville GL. 1975. Spruce budworm: super silviculturist. For Chron 51:138–40.Google Scholar
  3. Baskerville GL, MacLean DA. 1979. Budworm-caused mortality and 20-year recovery in immature balsam fir stands. Canadian Forest Service Information Report M-X-102.Google Scholar
  4. Bergeron Y, Flannigan M, Gauthier S, Leduc A, Lefort P. 2004. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. AMBIO 33:356–60.PubMedGoogle Scholar
  5. Blais JR. 1964. Account of a recent spruce budworm outbreak in the Laurentide Park region of Quebec and measures for reducing damage in future outbreaks. For Chron 40:313–23.Google Scholar
  6. Blais JR. 1981. Mortality of balsam fir and white spruce following a spruce budworm outbreak in the Ottawa River watershed in Quebec. Can J For Res 11:620–9.CrossRefGoogle Scholar
  7. Blais JR. 1983. Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Can J For Res 13:539–47.CrossRefGoogle Scholar
  8. Bouchard M, Kneeshaw D, Messier C. 2007. Forest dynamics following spruce budworm outbreaks in the northern and southern mixedwoods of central Quebec. Can J For Res 37:763–72.CrossRefGoogle Scholar
  9. Boudewyn P, Song X, Magnussen S, Gillis MD. 2007. Model-based, volume-to-biomass conversion for forested and vegetated land in Canada. Canadian Forest Service, Victoria, Canada, Information Report BC-X-411.Google Scholar
  10. Boulanger Y, Arsenault D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34:1035–43.CrossRefGoogle Scholar
  11. Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV. 2009. Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–84.CrossRefGoogle Scholar
  12. Candau J-N, Fleming RA. 2005. Landscape-scale spatial distribution of spruce budworm defoliation in relation to bioclimatic conditions. Can J For Res 35:2218–32.CrossRefGoogle Scholar
  13. Candau J-N, Fleming RA, Hopkin A. 1998. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Can J For Res 28:1733–41.CrossRefGoogle Scholar
  14. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–50.CrossRefGoogle Scholar
  15. Clark KL, Skowronski N, Hom J. 2009 Invasive insects impact forest carbon dynamics. Glob Change Biol. doi:10.1111/j.1365-2486.2009.01983.x.
  16. Deslauriers A, Morin H, Urbinati C, Carrer M. 2003. Daily weather responses of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477–84.Google Scholar
  17. Elliott NC, Simmons GA, Draper RJ. 1986. Adult emergence and activity patterns of parasites of early instar jack pine budworm (Lepidoptera: Tortricidae). Environ Entomol 15:409–16.Google Scholar
  18. Erdle TA, MacLean DA. 1999. Stand growth model calibration for use in forest pest impact assessment. For Chron 75:141–52.Google Scholar
  19. Gray DR. 2008. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Clim Change 87:361–83.CrossRefGoogle Scholar
  20. Gray DR, Régnière J, Boulet B. 2000. Analysis and use of historical patterns of spruce budworm defoliation to forecast outbreak patterns in Quebec. For Ecol Manage 127:217–31.CrossRefGoogle Scholar
  21. Gray DR, MacKinnon WE. 2006. Outbreak patterns of the spruce budworm and their impacts in Canada. For Chron 82:550–61.Google Scholar
  22. Greenbank DO, Schaefer GW, Rainey RC. 1980. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem Entomol Soc Can 110:1–49.Google Scholar
  23. Harvey GT. 1983. Environmental and genetic effects on mean egg weight in spruce budworm (Lepidoptera: Tortricidae). Can Entomol 115:1109–17.CrossRefGoogle Scholar
  24. Hennigar CR, MacLean DA. 2010. Spruce budworm and management effects on forest and wood product carbon for an intensively managed forest. Can J For Res (in press).Google Scholar
  25. Hennigar CR, MacLean DA, Porter KB, Quiring DT. 2007. Optimized harvest planning under alternative foliage-protection scenarios to reduce volume losses to spruce budworm. Can J For Res 37:1755–69.CrossRefGoogle Scholar
  26. Hennigar CR, MacLean DA, Quiring DT, Kershaw JA Jr. 2008. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For Sci 54:150–66.Google Scholar
  27. Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, Walsh J. 2004. Spatial and temporal variability in forest-atmosphere CO2 exchange. Glob Change Biol 10(10):1689–706.CrossRefGoogle Scholar
  28. IPCC. 2006. In: Eggleston HS, Buendia L, Miwa K, Ngara T, and Tanabe K, Eds. 2006 IPCC guidelines for national greenhouse gas inventories. Japan: Institute for Global Environmental Strategies.
  29. Jardon Y, Morin H, Dutilleul P. 2003. Périodicité et synchronisme des épidémies de la tordeuse des bourgeons de l’épinette au Québec. Can J For Res 25:902–11.Google Scholar
  30. Jenkins JC, Kicklighter DW, Ollinger SV, Aber JD, Melillo JM. 1999. Sources of variability in net primary production predictions at a regional scale: a comparison using PnET-II and TEM 40 in northeastern US forests. Ecosystems 2:555–70.CrossRefGoogle Scholar
  31. Kettela EG. 1983. A cartographic history of spruce budworm defoliation 1967 to 1981 in eastern North America. Canadian Forest Service Information Report DPC-X-14.Google Scholar
  32. Kull SJ, Kurz WA, Rampley GJ, Banfield GE, Schivatcheva RK, Apps MJ. 2006. Operational-Scale Carbon Budget Model off the Canadian Forest Sector (CBM-CFS3), Version 1.0: user’s guide. Edmonton: Natural Resources Canada, Canadian Forest Service.Google Scholar
  33. Kurz WA, Apps MJ, Webb TM, McNamee PJ. 1992. Carbon Budget of the Canadian Forest Sector Phase I. Forestry Canada, Information Report NOR-X-326.Google Scholar
  34. Kurz WA, Apps MJ. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–47.CrossRefGoogle Scholar
  35. Kurz WA, Stinson G, Rampley G. 2007. Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans R Soc B 363:1–9.Google Scholar
  36. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. 2008a. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–90.CrossRefPubMedGoogle Scholar
  37. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET. 2008b. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–5.CrossRefPubMedGoogle Scholar
  38. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ. 2009. CBM-CFS3: a model of C-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504. doi:10.1016/j.ecolmodel.2008.10.018.CrossRefGoogle Scholar
  39. Lekas TM, MacDougal RG, MacLean DA, Thompson RG. 1990. Seasonal trends and effects of temperature and rainfall on stem electrical capacitance of spruce and fir trees. Can J For Res 20:970–7.CrossRefGoogle Scholar
  40. Lessard G, Pelletier F, Champagne M. 2000. Bilan de l’implantation de Sylva II au Québec. Centre d’enseignement et de recherche de Sainte-Foy inc. (CERFO). Rapport 2000-2008. 12 pp. 6 annexes.
  41. Lovett GM, Canham CD, Authur MA, Weathers KC, Fitzhugh RD. 2006. Forest ecosystem responses to exotic pests and pathogens in Eastern North America. Bioscience 56:395–405.CrossRefGoogle Scholar
  42. Lysyk TJ, Nealis VG. 1988. Temperature requirements for development for the jack pine budworm (Lepidoptera: Tortricidae) and two of its parasitoids (Hymenoptera). J Econ Entomol 81:1045–51.Google Scholar
  43. MacLean DA. 1980. Vulnerability of fir-spruce stands during uncontrolled spruce budworm outbreaks: a review and discussion. For Chron 56:213–20.Google Scholar
  44. MacLean DA. 1984. Effects of spruce budworm outbreaks on the productivity and stability of balsam fir forests. For Chron 60:273–9.Google Scholar
  45. MacLean DA. 1996. Forest management strategies to reduce spruce budworm damage in the Fundy Model Forest. For Chron 72:399–405.Google Scholar
  46. MacLean DA, Ostaff DP. 1989. Patterns of balsam fir mortality caused by uncontrolled spruce budworm outbreak. Can J For Res 19:1087–95.CrossRefGoogle Scholar
  47. MacLean DA, MacKinnon WE. 1997. Effects of stand and site characteristics on susceptibility and vulnerability of balsam fir and spruce to spruce budworm in New Brunswick. Can J For Res 27:1859–71.CrossRefGoogle Scholar
  48. MacLean DA, Andersen AR. 2008. Impact of a spruce budworm outbreak in balsam fir and subsequent stand development over a 40-year period. For Chron 84:60–9.Google Scholar
  49. MacLean DA, Erdle TA, MacKinnon WE, Porter KB, Beaton KP, Cormier G, Morehouse S, Budd M. 2001. The spruce budworm decision support system: Forest protection planning to sustain long-term wood supply. Can J For Res 31:1742–57.CrossRefGoogle Scholar
  50. Mohan JE, Cox RM, Iverson LR. 2009. Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. Can J For Res 39:213–30.CrossRefGoogle Scholar
  51. Nealis VG. 1988. Weather and the ecology of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae). Mem Entomol Soc Can 146:57–70.Google Scholar
  52. Nealis VG, Fraser S. 1988. Rate of development, reproduction, and mass-rearing of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae) under controlled conditions. Can Entomol 120:197–204.CrossRefGoogle Scholar
  53. Nealis VG, Régnière J. 2004. Insect-host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Can J For Res 34:1870–82.CrossRefGoogle Scholar
  54. Neilson ET, MacLean DA, Meng F-R, Hennigar CR, Arp PR. 2008. Optimal on- and off-site forest carbon sequestration under existing timber supply constraints in northern New Brunswick. Can J For Res 38:2784–96.CrossRefGoogle Scholar
  55. NFDP (National Forestry Database Program). 2008. Compendium of Canadian forestry statistics [online]. Canadian Council of Forest Ministers. Accessed February 2008.
  56. Nyrop JP, Simmons GA. 1986. Temporal and spatial activity patterns of an adult parasitoid, Glypta fumiferanae (Hymenoptera: Ichneumonidae), and their influence on parasitism. Environ Entomol 15:481–7.Google Scholar
  57. Pan Y, Birdsey R, Hom J, McCullough K, Clark K. 2006. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecol Appl 16(1):125–32. doi:10.1890/05-0247.CrossRefPubMedGoogle Scholar
  58. Peltonen M, Liebhold AM, Bjørnstad ON, Williams DW. 2002. Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal. Ecology 83:3120–9.CrossRefGoogle Scholar
  59. Petersen AK, Solberg B. 2005. Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden. For Policy Econ 7:249–59.Google Scholar
  60. QMRNF (Quebec Ministère des Ressources naturelles et de la Faune du Québec). 2009. Aires défoliées par la tordeuse des bourgeons de l’épinette au Québec en 2009. Direction de l’environnement et de la protection des forêts, Québec, Québec.Google Scholar
  61. Régnière J, Duval P. 1998. Overwintering mortality of spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), populations under field conditions. Can Entomol 130:13–26.CrossRefGoogle Scholar
  62. Régnière J, You M. 1991. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecol Model 54:277–97.CrossRefGoogle Scholar
  63. Royama T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol Monogr 54:429–62.CrossRefGoogle Scholar
  64. Sanders CJ, Wallace DR, Lucuik GS. 1978. Flight activity of female eastern spruce budworm (Lepidoptera: Tortricidae) at constant temperatures in the laboratory. Can Entomol 110:627–32.CrossRefGoogle Scholar
  65. Simpson R, Coy D. 1999. An ecological atlas of forest insect defoliation in Canada 1980–1996. Canadian Forest Service Information Report M-X-206E.Google Scholar
  66. Slaney GL, Lantz VA, MacLean DA. 2009. The economics of carbon sequestration through pest management: application to forested landbases in New Brunswick and Saskatchewan, Canada. For Policy Econ 11:525–34.Google Scholar
  67. Smitley DR, Bauer LS, Hajek AE, Sapio FJ, Humber RA. 1995. Introduction and establishment of Entomophaga maimaiga, a fungal pathogen of gypsy moth (Lepidoptera: Lymantriidae) in Michigan. Environ Entomol 24:1685–95.Google Scholar
  68. Sterner TE, Davidson AG, Eds. 1982. Forest insect and disease conditions in Canada 1981. Canadian Forest Service FIDS Report. 46 p.Google Scholar
  69. Stinson G, Freedman B. 2001. Potential for carbon sequestration in Canadian forests and agroecosystems. Mitig Adapt Strateg Glob Change 6:1–23.CrossRefGoogle Scholar
  70. Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR. 2002. Large forest fires in Canada, 1959–1997. J Geophys Res 108(D1 8149):FFR5.1–FFR5.12.Google Scholar
  71. Sun J, Peng C, McCaughey H, Zhou X, Thomas V, Berninger F, St. Onge B, Hua D. 2008. Simulating carbon exchange of Canadian boreal forests: II. Comparing the carbon budgets of a boreal mixedwood stand to a black spruce forest stand. Ecol Model 219(3–4):276–86.CrossRefGoogle Scholar
  72. Thireau J-C, Régnière J. 1995. Development, reproduction, voltinism and host synchrony of Meteorus trachynotus with its host Choristoneura fumiferana and C. rosaceana. Entomologia Experimentalis et Applicata 76:67–82.CrossRefGoogle Scholar
  73. Trofymow JA, Stinson G, Kurz WA. 2008. Derivation of a spatially explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island, BC. For Ecol Manage 256(10):1677–91.CrossRefGoogle Scholar
  74. Weber JD, Volney WJA, Spence JR. 1999. Intrinsic developmental rate of spruce budworm (Lepidoptera: Tortricidae) across a gradient of latitude. Environ Entomol 28:224–32.Google Scholar
  75. Williams D, Birdsey R. 2003. Historical patterns of spruce budworm defoliation and bark beetle outbreaks in North American conifer forests: an atlas and description of digital maps. U.S.D.A Forest Service General Technical Report NE-308.Google Scholar
  76. Williams DW, Liebhold AM. 2000. Spatial synchrony of spruce budworm outbreaks in eastern North America. Ecology 81:2753–66.CrossRefGoogle Scholar
  77. Wilson GG. 1974. The effects of temperature and ultraviolet radiation on the infection of Choristoneura fumiferana and Malacosoma pluviale by a microsporidian parasite, Nosema (Perezia) fumiferanae (Thom.). Can J Zool 52:59–63.CrossRefGoogle Scholar
  78. Yuan F, Arain MA, Barr A, Black TA, Bourque P-A, Coursolle C, Margolis H, McCaughey H, Wofsy SC. 2008. Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across an east-west continental transect in Canada. Glob Change Biol 14:1–20. doi:10.1111/j.1365-2486.2008.01612.x.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Caren C. Dymond
    • 1
    • 2
  • Eric T. Neilson
    • 1
  • Graham Stinson
    • 1
  • Kevin Porter
    • 3
  • David A. MacLean
    • 4
  • David R. Gray
    • 3
  • Michel Campagna
    • 5
  • Werner A. Kurz
    • 1
  1. 1.Natural Resources Canada, Canadian Forest ServiceVictoriaCanada
  2. 2.Ministry of Forests and Range, Government of British ColumbiaVictoriaCanada
  3. 3.Natural Resources Canada, Canadian Forest ServiceFrederictonCanada
  4. 4.Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
  5. 5.Ressources Naturelles et faune QuébecQuébecCanada

Personalised recommendations