Skip to main content

Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca, Spain): Ecosystem and Biogeochemical Significance

Abstract

This article reports the results of a study of submarine groundwater discharge (SGD) to coastal waters of Majorca (NW Mediterranean). The overall aim is to evaluate the relevance of SGD of the island and chemically characterize the components that are supplied to the coastal waters through this pathway. Although other discharge areas are identified, we particularly focus on SGD in bays and areas of increased sea water residence time where effects of the discharges are expected to be most notable. Analysis at four selected embayments with different land-use characteristics indicated a link between human activities (mainly agriculture and urban) and compounds arriving to the coast. A pathway for these elements is the diffuse discharge along the shoreline, as suggested by the inverse relationship between salinity and nutrients in nearshore porewaters. A general survey was conducted at 46 sites around the island, and used dissolved radium as a qualitative indicator of SGD. Measurements of nutrients (P and N), pCO2 and TOC were performed to characterize the elements delivered to the coastal environment. Most nearshore samples showed 224Ra enrichment (mean ± SE, 7.0 ± 0.6 dpm 100 l−1) with respect to offshore waters (1.1 ± 0.2 dpm 100 l−1); however, 224Ra measurements along the coast were highly variable (1.0–38.1 dpm 100 l−1). Coastal samples with enhanced radium levels showed elevated pCO2 with respect to atmospheric concentrations, which together with high pCO2 in groundwater (>5,000 ppm) indicates that SGD is an important vector of CO2 to coastal waters. Moreover, a relationship between 224Ra and phytoplankton biomass was established, suggesting an important impact of SGD on coastal productivity. The results presented here provide a first approximation of the SGD effect in the coastal waters of Majorca, and indicate that SGD could be an important source of nutrients and CO2 to the coast, strongly influencing the productivity and biogeochemical cycling of the coastal waters of Majorca.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Alcoverro T, Romero J, Duarte CM, López NI. 1997. Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Mar Ecol Prog Ser 146:155–61.

    Article  Google Scholar 

  2. Arenas C, Cabrera L, Ramos E. 2007. Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sediment Geol 197:1–27.

    Article  Google Scholar 

  3. Avril B. 2002. DOC dynamics in the northwestern Mediterranean Sea (DYFAMED site). Deep-Sea Res II 49:2163–82.

    Article  CAS  Google Scholar 

  4. Barón A, González C. 1987. Hidrología de la Isla de Mallorca. Servei Hidraúlic. Govern de les Illes Balears. Spain: Palma de Mallorca. 83 pp.

    Google Scholar 

  5. Barón A, González C, Rodríguez-Perea A. 1995. Karst hydrology of Mallorca. Endins 3:45–57.

    Google Scholar 

  6. Barón A. 1999. Hidrología Propuesta del plan hidrológico de las Islas Baleares. Govern de les Illes Balears. Spain: Palma de Mallorca. 273 pp.

    Google Scholar 

  7. Barrón C. 2005. Production and export of dissolved organic carbon in coastal benthic ecosystems. PhD thesis. Univesitat de Les Illes Balears.

  8. Basterretxea G, Garcés E, Jordi A, Angles S, Masó M. 2007. Modulation of nearshore blooms by growth rate and water renewal. Mar Ecol Prog Ser 352:53–65.

    Article  CAS  Google Scholar 

  9. Beck AJ, Rapaglia P, Cochran JK, Bokuniewicz HJ. 2007. Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Mar Chem 106:419–41.

    Article  CAS  Google Scholar 

  10. Berner RA. 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschritte der Mineralogie 59:117–35.

    CAS  Google Scholar 

  11. Borges AV, Delille B, Frankignoulle M. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystem counts. Geophys Res Lett 32:L14601.

    Article  Google Scholar 

  12. Borges AV. 2005. Do we have enough pieces of the Jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27.

    Article  CAS  Google Scholar 

  13. Butzer KW. 1962. Coastal geomorphology of Majorca. Ann Assoc Am Geogr 52:191–202.

    Article  Google Scholar 

  14. Cai WJ, Wang YC. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 43:657–68.

    Article  CAS  Google Scholar 

  15. Cai WJ, Wang YC, Krest J, Moore WS. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim Cosmochim Acta 67:631–9.

    Article  CAS  Google Scholar 

  16. Candela I, Wallis KJ, Mateos RM. 2008. Non-point pollution of groundwater from agricultural activities in Mediterranean Spain: Balearic Islands case study. Environ Geol 54:587–95.

    Article  CAS  Google Scholar 

  17. Capone DG, Bautista MF. 1985. A groundwater source of nitrate in nearshore marine sediments. Nature 313:214–16.

    Article  CAS  Google Scholar 

  18. Capone DG, Slater JM. 1990. Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry 10:277–88.

    Article  CAS  Google Scholar 

  19. Charette MA, Buesseler KO, Andrews JE. 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol Oceanogr 46:465–70.

    Article  CAS  Google Scholar 

  20. Charette MA, Splivallo R, Herbold C, Bollinger M, Moore WS. 2003. Salt marsh submarine groundwater discharge as traced by radium isotopes. Mar Chem 84:113–21.

    Article  CAS  Google Scholar 

  21. Charette MA, Allen MC. 2006. Precision groundwater sampling in coastal aquifers using a direct push shielded screen well-point system. Groundw Monit Remediat 26:87–93.

    Article  CAS  Google Scholar 

  22. Church TM. 1996. An underground route for the water cycle. Nature 380:579–80.

    Article  CAS  Google Scholar 

  23. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middleburg J, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.

    Article  CAS  Google Scholar 

  24. Eptisa. 2008. Propuesta del Plan Hidrológico de la Demarcación de Baleares. Govern de les Illes Balears. Spain: Palma de Mallorca. p 386.

    Google Scholar 

  25. Essex S, Kent M, Newnham R. 2004. Tourism development in Mallorca: is water supply a constraint? J Sustain Tour 12:4–28.

    Article  Google Scholar 

  26. Fornós JJ, Gelabert B, Ginés A, Ginés J, Tuccimei P, Vesica P. 2002. Phreatic overgrowths on speleothems: a useful tool in structural geology in littoral karstic landscapes. The example of eastern Mallorca (Balearic Islands). Geodinamica Acta 15:113–25.

    Article  Google Scholar 

  27. Fourqurean JW, Jones RD, Zieman JC. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuar Coast Shelf Sci 36:295–314.

    Article  CAS  Google Scholar 

  28. Garcia-Solsona E, Garcia-Orellana J, Masqué P, Dulaiova H. 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a delayed coincidence counter (RaDeCC). Mar Chem 109:198–219.

    Article  CAS  Google Scholar 

  29. Garcia-Solsona E, Garcia-Orellana J, Masqué P, Garcés E, Radakovitch O, Mayer A, Estradé S, Basterretxea G. 2010. An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97:211–29.

    Article  CAS  Google Scholar 

  30. Gazeau F, Duarte CM, Gattuso JP, Barrón C, Navarro N, Ruíz S, Prairie YT, Calleja M, Delille B, Frankignoulle M, Borges AV. 2005. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences 2:43–60.

    Article  CAS  Google Scholar 

  31. Glover RE. 1959. The pattern of freshwater flow in a coastal aquifer. J Geophys Res 64:457–9.

    Article  Google Scholar 

  32. Gobler CJ, Sañudo-Wilhelmy SA. 2001. Temporal variability of groundwater seepage and brown tide blooms in a Long Island embayment. Mar Ecol Prog Ser 209:19–34.

    Article  CAS  Google Scholar 

  33. Gracia F, Clamor B, Jaume J, Fornós JJ, Uriz MJ, Martin D, Gil J, Gracia P, Febrer M, Pons G. 2005. Las cova des Coll (Felanitx, Mallorca): espeleogénesi, geomorofologia, sedimentologia, fauna y conservació. Endins 27:141–86.

    Google Scholar 

  34. Grasshoff K, Ehrrardt M, Kremling K. 1983. Methods of sea water analysis. Germany: Verlag Chemie.

    Google Scholar 

  35. Kelly RP, Moran SB. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr 47:1796–807.

    Article  Google Scholar 

  36. Kent M, Newnham R, Essex S. 2002. Tourism and sustainable water supply in Mallorca: a geographical analysis. Appl Geogr 22:351–74.

    Article  Google Scholar 

  37. La Roche J, Nuzzi R, Waters R, Wyman K, Falkowski PG, Wallace DWR. 1997. Brown tide blooms in Long Island’s coastal waters linked interannual variability in groundwater flow. Glob Change Biol 3:397–410.

    Article  Google Scholar 

  38. Lee RD. 1977. A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–7.

    Article  CAS  Google Scholar 

  39. Li L, Barry D, Stagnitti F, Parlange JP. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35:3253–9.

    Article  CAS  Google Scholar 

  40. Lopez-Garcia JM. 2002. Reutilización de aguas residuales en el Plá de Sant Jordi (Mallorca). In: Jornadas sobre el presente y futuro del agua subterránea en España y la Directiva Marco Europea. AIH-GE. Zaragoza.

  41. Meybeck M. 1995. Global distribution of lakes. In: Lerman A, Imboden DM, Gat JR, Eds. Physics and chemistry of lakes. Berlin: Springer-Verlag. p 1–35.

    Google Scholar 

  42. Michael HA, Mulligan AE, Harvey CF. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–8.

    Article  CAS  PubMed  Google Scholar 

  43. Montluçon D, Sañudo-Wilhelmy SA. 2001. Influence of net groundwater discharge on the chemical composition of a coastal environment: Flanders Bay, Long Island, New York. Environ Sci Technol 35:480–6.

    Article  PubMed  Google Scholar 

  44. Moore WS. 1976. Sampling 228Ra in the deep ocean. Deep-Sea Res 23:647–51.

    CAS  Google Scholar 

  45. Moore WS. 1996. Large groundwater inputs to coastal waters revealed by Ra-226 enrichments. Nature 380:612–14.

    Article  CAS  Google Scholar 

  46. Moore WS, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J Geophys Res 101:1321–9.

    Article  CAS  Google Scholar 

  47. Moore WS. 2000. Determining coastal mixing rates using radium isotopes. Cont Shelf Res 20:1993–2007.

    Article  Google Scholar 

  48. Moore WS. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66:75–93.

    Article  CAS  Google Scholar 

  49. Moore WS. 2006. The role of submarine groundwater discharge in coastal biogeochemistry. J Geochem Explor 88:389–93.

    Article  CAS  Google Scholar 

  50. Moore WS. 2010. The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:345–74.

    Google Scholar 

  51. PU MO. 1990. Unidades hidrogeológicas de la España peninsular e Islas Baleares. Informaciones y estudios nº 52. Madrid: Servicio Geológico.

    Google Scholar 

  52. Nielsen KA, Clemmensen LB, Fornós JJ. 2004. Middle Pleistocene magnetostratigraphy and susceptibility stratigraphy: data from a carbonate aeolian system, Mallorca, Western Mediterranean. Quat Sci Rev 23:1733–56.

    Article  Google Scholar 

  53. Onac PB, Fornós JJ, Ginés A, Ginés J. 2005. Mineralogical reconnaissance of caves from Mallorca Island. Endins 27:131–40.

    Google Scholar 

  54. Parsons TR, Maita Y, Lalli CM. 1984. A manual of chemical and biological methods for seawater analysis. Oxford, UK: Pergamon Press.

    Google Scholar 

  55. Pérez M, Romero J, Duarte CM, Sand-Jensen K. 1991. Phosphorus limitation of Cymodocea nodosa growth. Mar Biol 109:129–33.

    Article  Google Scholar 

  56. Pomar L. 1991. Reef geometries, erosion surfaces and high frequency sea-level changes, upper Miocene Reef Complex, Mallorca, Spain. Sedimentology 38:243–69.

    Article  Google Scholar 

  57. Short FT. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat Bot 27:41–57.

    Article  CAS  Google Scholar 

  58. Slomp CP, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86.

    Article  CAS  Google Scholar 

  59. Swarzenski PW, Orem WH, McPherson BF, Baskaran M, Wan Y. 2006. Biogeochemical transport in the Loxahatchee River estuary, Florida: the role of submarine groundwater discharge. Mar Chem 101:248–65.

    Article  CAS  Google Scholar 

  60. Swarzenski PW, Izbicki JA. 2009. Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity. Estuar Coast Shelf Sci 83:77–89.

    Article  CAS  Google Scholar 

  61. Taniguchi M, Burnett WC, Cable JE, Turner JV. 2002. Investigation of submarine groundwater discharge. Hydrol Process 16:2115–29.

    Article  Google Scholar 

  62. Thingstad TF, Zweifel L, Rassoulzadegan F. 1998. P-limitation of both phytoplankton and heterotrophic bacteria in the North West Mediterranean. Limnol Oceanogr 43:88–94.

    Article  CAS  Google Scholar 

  63. Vacher HL. 1988. Dupuit-Ghyben-Herzberg analysis of strip island lenses. Bull Geol Soc Am 100:580–91.

    Article  Google Scholar 

  64. Valiela I, Teal JM, Volkmann S, Shafer D, Carpenter EJ. 1978. Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and groundwater. Limnol Oceanogr 23:798–812.

    Article  CAS  Google Scholar 

  65. Valiela I, Teal JM. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280:652–6.

    Article  CAS  Google Scholar 

  66. Valiela I, Costa J, Foreman K, Teal JM, Howes B, Aubrey D. 1990. Transport of ground-borne nutrients from watersheds and their effects on coastal waters. Biodegradation 10:177–97.

    CAS  Google Scholar 

  67. Valiela I, Foreman K, LaMontagne M, Hersh D, Costa J, Peckol P, DeMeo-Andreson B, D’Avanzo C, Babione M, Sham CH, Brawley J, Lajtha K. 1992. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachussets. Estuaries 15:443–57.

    Article  CAS  Google Scholar 

  68. Van Meir N, Jaeggi D, Herfort M, Loew S, Pezard PA, Lods G. 2007. Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data. Hydrogeol J 15:225–40.

    Article  Google Scholar 

  69. Vesica PL, Tuccimei P, Turi B, Fornós JJ, Ginés A, Ginés J. 2000. Late Pleistocene paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain. Quat Sci Rev 19:865–79.

    Article  Google Scholar 

  70. Vila M, Camp J, Garcés E, Masó M, Delgado M. 2001. High resolution spatio-temporal detection of potentially harmful dinoflagellates in confined waters of the NW Mediterranean. J Plankton Res 23:497–514.

    Article  Google Scholar 

  71. Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–82.

    Article  Google Scholar 

  72. Weinstein Y, Less G, Kafri U, Herut B. 2006. Submarine groundwater discharge in the southeastern Mediterranean (Israel). Radioact Environ 8:360–72.

    Article  CAS  Google Scholar 

  73. Weiss RF. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–15.

    Article  CAS  Google Scholar 

  74. Whitaker FF, Smart PL. 1990. Active circulation of saline ground waters in carbonate platforms: evidence from the Great Bahama Bank. Geology 18:200–2003.

    Article  Google Scholar 

  75. Whitaker FF, Smart PL. 1993. Saline groundwater circulation in carbonate build-ups: an overview and case study from the Bahamas. In: Horbury AD and Robinson AG, Eds. Diagenesis and basin development. American Association of Petroleum Geologists, Studies in Geology, vol 36, p 113–32.

  76. Zektser IS, Loaiciga HA. 1993. Groundwater fluxes in the global hydrologic cycle: past, present, and future. J Hydrol 144:405–27.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Balearic Island Government (Economia. Hisenda i Innovacio; Núm: 8171/2006 and 6014/2007), EDASE (Ref: CGL2008-00047/BTE), and the European Union FP6 Integrated Project THRESHOLDS (project no. IP-003933). Support for the research of Pere Masqué was received through the prize ICREA Academia, funded by the Generalitat de Catalunya. We are most grateful for the helpful comments of two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gotzon Basterretxea.

Additional information

Author contributions

G.B. and A.T.-S. led planning design and execution of the sampling, analyzed the data and wrote the paper. A.B. designed, sampled, and analyzed waters from piezometers. P.M., J.G.-O., and E.G.-S were involved in the sampling, analysis, and interpretation of the isotopic measurements. H.B. and R.C. participated in the field sampling, and led the design and measurements obtained from the seepage meters. C.D. and R.V.-S. provided and processed information on PCO2 and LM-R participated in the analysis of nutrients and in the GIS based analyses. All authors were involved in the writing stage of the manuscript and collaborated on the analysis, interpretation, and discussion of the results.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Basterretxea, G., Tovar-Sanchez, A., Beck, A.J. et al. Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca, Spain): Ecosystem and Biogeochemical Significance. Ecosystems 13, 629–643 (2010). https://doi.org/10.1007/s10021-010-9334-5

Download citation

Keywords

  • submarine groundwater discharge
  • nutrients
  • pCO2
  • islands
  • Majorca
  • Mediterranean