Skip to main content
Log in

No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Reliable soil organic carbon (SOC) stock measurements of all major ecosystems are essential for predicting the influence of global warming on global soil carbon pools, but hardly any detailed soil survey data are available for tropical montane cloud forests (TMCF) and adjacent high elevation grasslands above (puna). TMCF are among the most threatened of ecosystems under current predicted global warming scenarios. We conducted an intensive soil sampling campaign extending 40 km along the tree line in the Peruvian Andes between 2994 and 3860 m asl to quantify SOC stocks of TMCF, puna grassland, and shrubland sites in the transition zone between the two habitats. SOC stocks from the soil surface down to the bedrock averaged (±standard error SE) 11.8 (±1.5, N = 24) kg C/m2 in TMCF, 14.7 (±1.4, N = 9) kg C/m2 in the shrublands and 11.9 (±0.8, N = 35) kg C/m2 in the grasslands and were not significantly different (P > 0.05 for all comparisons). However, soil profile analysis revealed distinct differences, with TMCF profiles showing a uniform SOC distribution with depth, shrublands a linear decrease, and puna sites an exponential decrease in SOC densities with soil depth. Organic soil layer thickness reached a maximum (~70 cm) at the upper limit of the TMCF and declined with increasing altitude toward puna sites. Within TMCF, no significant increase in SOC stocks with increasing altitude was observed, probably because of the large variations among SOC stocks at different sites, which in turn were correlated with spatial variation in soil depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arteaga A, Calderón GNE, Krasilnikov PV, Sedov SN, Targulian VO, Velázquez RN. 2008. Soil altitudinal sequence on base-poor parent material in a montane cloud forest in Sierra Juárez, southern Mexico. Geoderma 144:593–612.

    Article  CAS  Google Scholar 

  • Bernoux M, Cerri C, Arrouays D, Jolivet C, Volkoff B. 1998. Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Sci Soc Am J 62:743–9.

    CAS  Google Scholar 

  • Bush MB, Silman MR, Urrego DH. 2004. 48,000 years of climate and forest change in a biodiversity hotspot. Science 303:827–9.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun FG, Smeck NE, Slater BL, Bigham JM, Hall GF. 2001. Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Sci Soc Am J 65:811–19.

    Article  CAS  Google Scholar 

  • Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–61.

    Article  CAS  PubMed  Google Scholar 

  • Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S. 2004. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Tellus B 359:331–43.

    CAS  Google Scholar 

  • Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55:73–106.

    Article  Google Scholar 

  • Gräfe S, Hertel D, Leuschner C. 2008. Estimating fine root turnover in tropical forests along an elevational Transect using minirhizotrons. Biotropica 40:536–42.

    Article  Google Scholar 

  • Harris WN, Moretto AS, Distel RA, Boutton TW, Bóo RM. 2007. Fire and grazing in grasslands of the Argentine Caldenal: effects on plant and soil carbon and nitrogen. Acta Oecol 32:207–14.

    Article  Google Scholar 

  • Heuscher SA, Brandt CC, Jardine PM. 2005. Using soil physical and chemical properties to estimate bulk density. Soil Sci Soc Am J 69:51–6.

    CAS  Google Scholar 

  • Hofstede RGM. 1995. The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant Soil 173:111–32.

    Article  CAS  Google Scholar 

  • Houghton RA. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55:378–90.

    Article  Google Scholar 

  • Janzen HH. 2004. Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104:399–417.

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–36.

    Article  Google Scholar 

  • Kok K, Verweij PA, Beukema H. 1995. Effects of cutting and grazing in Andean treeline vegetation. In: Churchill S, Balslev H, Forero E, Luteyn JL, Eds. Biodiversity and conservation of neotropical Monatne forests. New York: New York Botanical Garden. p 527–39.

    Google Scholar 

  • Körner C. 2007. The use of altitude in ecological research. Trends Ecol Evol 22:569–74.

    Article  PubMed  Google Scholar 

  • Leifeld J, Bassin S, Fuhrer J. 2005. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric Ecosyst Environ 105:255–66.

    Article  CAS  Google Scholar 

  • Li XG, Wang ZF, Ma QF, Li FM. 2007. Crop cultivation and intensive grazing affect organic C pools and aggregate stability in arid grassland soil. Soil Tillage Res 95:172–81.

    Article  Google Scholar 

  • Norby RJ, Luo Y. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–93.

    Article  Google Scholar 

  • Post WM, Izaurralde RC, Mann LK, Bliss N. 2001. Monitoring and verifying changes of organic carbon in soil. Clim Change 51:73–99.

    Article  Google Scholar 

  • Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87.

    Article  PubMed  Google Scholar 

  • Ramsay PM, Oxley ERB. 1996. Fire temperatures and postfire plant community dynamics in Ecuadorian grass páramo. Plant Ecol 124:129–44.

    Google Scholar 

  • Reeder JD, Schuman GE. 2002. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environ Pollut 116:457–63.

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento FO, Frolich LM. 2002. Andean cloud forest tree lines: naturalness, agriculture and the human dimension. Mt Res Dev 22:278–87.

    Article  Google Scholar 

  • Schawe M, Glatzel S, Gerold G. 2007. Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69:83–90.

    Article  Google Scholar 

  • Schrumpf M, Guggenberger G, Valrezo C, Zech W. 2001. Development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132:43–59.

    Google Scholar 

  • Schulp CJE, Nabuurs GJ, Verburg PH, de Waal RW. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manag 256:482–90.

    Article  Google Scholar 

  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–82.

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C. 2007. Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes. J Trop Ecol 23:319–28.

    Article  Google Scholar 

  • Sombroek WG, Nachtergaele FO, Hebel A. 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–26.

    Google Scholar 

  • Tian G, Brussaard L, Kang BT. 1995. Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: effects of earthworms and millipedes. Soil Biol Biochem 27:277–80.

    Article  CAS  Google Scholar 

  • Townsend AR, Vitousek PM, Trumbore SE. 1995. Soil organic matter dynamics along gradients in temperature and land-use on the island of Hawaii. Ecology 76:721–33.

    Article  Google Scholar 

  • Trumbore S, da Costa ES, Nepstad DC, de Camargo PB, Martinelli L, Ray D, Restom T, Silver W. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Change Biol 12:217–29.

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.

    Article  CAS  PubMed  Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J. 2008. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–30.

    Article  CAS  Google Scholar 

  • Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana A. 2009a. Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest. Soil Biol Biochem 41:1338–40.

    Article  CAS  Google Scholar 

  • Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana A. 2009b. Climate dependence of heterotrophic soil respiration from a soil translocation experiment along a 3000 m altitudinal tropical forest gradient. Eur J Soil Sci. doi:10.1111/j.1365-2389.2009.01175.x.

Download references

Acknowledgments

This study is a product of the ABERG consortium (http://www.andesconservation.org). We thank the Blue Moon Fund and the Gordon and Betty Moore Foundation ‘Andes to Amazon’ Programme for support. We especially thank Manu National Park and the Peruvian Instituto Nacional de Recursos National (INRENA) and the Amazon Conservation Association (ACCA) for allowing access to their sites. Luis Imunda Gonzales and students from Wake Forest University and the Universidad San Antonio de Abad, Cusco were essential for the completion of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zimmermann.

Additional information

Author Contributions

PM, MRS, AG, KJF, MBB, MZ designed the study; MRS, AF, AG, DHU, MBB, KJF, KCG, GCD, WRF, BPG, WTJ, KMK, ATM, NMQR, BTS, FZ, MZ performed the research; MZ, PM, MRS, AF, AG, YM, DHU analyzed the data; and MZ, PM wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, M., Meir, P., Silman, M.R. et al. No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes. Ecosystems 13, 62–74 (2010). https://doi.org/10.1007/s10021-009-9300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-009-9300-2

Keywords

Navigation