Skip to main content

Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen

Abstract

Peatlands store 30% of the world’s terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  • Alm J, Schulman L, Silvola J, Walden J, Nykänen H, Martikainen PJ. 1999. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–74.

    Google Scholar 

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jonsdottir IS, Laine K, Levesque E, Marion GM, Molau U, Molgaard P, Nordenhall U, Raszhivin V, Robinson CH, Starr G, Stenstrom A, Stenstrom M, Totland O, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA. 1999. Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511.

    Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. Wetlands 26:889–916.

    Article  Google Scholar 

  • Bubier JL, Frolking S, Crill PM, Moore TR, Savage K, Varner RK. 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochem Cycles 12:703–14.

    Article  CAS  Google Scholar 

  • Carroll P, Crill PM. 1997. Carbon balance of a temperate poor fen. Global Biogeochem Cycles 11:349–56.

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ. 2003. Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–51.

    Article  CAS  Google Scholar 

  • Christensen TR, Jonasson S, Callaghan V, Havstrom M. 1999. On the potential CO2 release from tundra soils in a changing climate. Appl Soil Ecol 11:127–34.

    Article  Google Scholar 

  • Clymo RS. 1983. Peat. In: Gore AJP, Ed. Ecosystems of the world, 4A. Mires: swamp, bog, fen and moor, General Studies. Amsterdam: Elsevier. p 159–224.

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES. 1988. Methane flux from Minnesota peatlands. Global Biogeochem Cycles 2:371–84.

    Article  CAS  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Lock MA, Reynolds B, Hudson J. 1996. Microbial activity and enzymatic decomposition processes following peatland water table drawdown. Plant Soil Sci 180:121–7.

    CAS  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Lock MA, Hughes S, Reynolds B, Hudson J. 1997. Enzymes and biogeochemical cycling in wetlands during a simulated drought. Biogeochemistry 39:177–87.

    Article  CAS  Google Scholar 

  • Frolking S, Crill PM. 1994. Climate controls on temporal variability of methane flux from a poor fen in Southeastern New Hampshire: measurement and modeling. Global Biogeochem Cycles 8:385–97.

    Article  CAS  Google Scholar 

  • Goetz LD, Bunn AG, Fiske GJ, Houghton RA. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci 102:13.521–5.

    Article  CAS  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.

    Article  Google Scholar 

  • Griffis TJ, Rouse WR, Waddington JM. 2000. Interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen. Global Biogeochem Cycles 14:1109–21.

    Article  CAS  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change 72:251–98.

    Article  Google Scholar 

  • Hinzman LD, Viereck L, Adams PC, Romanovsky V, Yoshikawa K. 2006. Climate and permafrost dynamics of the Alaskan Boreal Forest. In: Chapin F, Ed. Alaska’s changing boreal forest. New York: Oxford University Press. p 39–98.

    Google Scholar 

  • Hobbie SE, Chapin FSIII. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–44.

    Google Scholar 

  • Jorgenson MT, Osterkamp TE. 2005. Response of boreal ecosystems to various modes of permafrost degradation. Can J For Res 35:2100–11.

    Article  Google Scholar 

  • Keyser AR, Kimball JS, Nemani RR, Running SW. 2000. Simulating the effects of climate change on the carbon balance of North American high-latitude forests. Global Change Biol 6:185–95.

    Article  Google Scholar 

  • Kimball JS, Zhao M, McGuire AD, Heinsch FA, Clein J, Calef M, Jolly WM, Kang S, Euskirchen SE, McDonald KC, Running SW. 2007. Recent climate driven increases in vegetation productivity for the Western Arctic: evidence of an acceleration of the northern terrestrial carbon cycle. Earth Interact 11:1–23.

    Article  Google Scholar 

  • Laiho R, Vasander H, Penttila T, Laine J. 2003. Dynamics of plant-mediated organic matter and nutrient cycling following water-level draw-down in boreal peatlands. Global Biogeochem Cycles 17:1053. doi:10.1029/2002GB002015.

    Article  CAS  Google Scholar 

  • Laine J, Silvola J, Tolonen K, Alm J, Nykanen H, Vasander H, Sallantaus T, Savolainen I, Sinisalo J, Martikainen PJ. 1996. Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio 25:179–84.

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberber O. 2006. SAS for Mixed Models, 2nd edn. Cary, NC, USA: SAS Institute, Inc.

  • McNeil P, Waddington JM. 2003. Moisture controls on Sphagnum growth and CO2 exchange in a cutover bog. J Appl Ecol 40:354–67.

    Google Scholar 

  • Minkkinen K, Korhonen R, Savolainen I, Laine J. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900–2100—the impact of forestry drainage. Global Change Biol 8:785–99.

    Article  Google Scholar 

  • Minkkinen K, Laine J. 1998. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–75.

    Article  Google Scholar 

  • Moore TR. 1989. Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Can J Bot 67:1203–7.

    Google Scholar 

  • Moore TR, Knowles R. 1989. Influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–8.

    CAS  Google Scholar 

  • Moore TR, Dalva M. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Eur J Soil Sci 44:651–64.

    Article  CAS  Google Scholar 

  • Moore TR, Roulet NT, Waddington JM. 1998. Uncertainties in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40:229–45.

    Article  CAS  Google Scholar 

  • Myers-Smith I, McGuire AD, Harden JW, Chapin FS III. 2007. The influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest. J Geophys Res Biosci 112:G04017. doi:10.1029/2007JG000423.

  • Nykanen H, Alm J, Lang K, Silvola J, Martikainen PJ. 1995. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–7.

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D. 2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–81.

    Article  CAS  PubMed  Google Scholar 

  • Osterkamp TE. 2007. Characteristics of the recent warming of permafrost in Alaska. J Geophys Res 112:F02S02.

    Google Scholar 

  • Osterkamp TE, Romanovsky VE. 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost Periglac Process 10:17–37.

    Article  Google Scholar 

  • Pacala S, Birdsey R, Bridgham S, Conant RT, Davis K, Hales B, Houghton R, Jenkins JC, Johnston M, Marland G, Paustian K, Wofsy SC. 2007. The North America carbon budget past and present. In: King AW, Dilling L, Zimmerman GP, Fairman DM, Houghton RA, Marland GH, Rose AZ, Wilbanks TJ, Eds. The First State of the Carbon Cycle Report (SOCCR): North American Carbon Budget and Implications for the Global Carbon Cycle. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Asheville, NC: National Climatic Data Center. p 29–36, 242 pp.

  • Riordan B, Verbyla D, McGuire AD. 2006. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res Biogeosci G04002. doi:10.1029/2005JG000150.

  • Schuur EAG, Bockheim J, Canadell J, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur P, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky V, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–14.

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp TE, Dyurgerov M, Romanovsky VE, Oechel WC, Morison J, Zhang T, Barry RG. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46:159.

    Article  Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–28.

    Article  Google Scholar 

  • Strack M, Waddington JM. 2007. Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochem Cycles 21:GB1007. doi:10.1029/2006GB002715.

  • Thormann MN, Bayley SE. 1997. Aboveground plant production and nutrient content of the vegetation in six peatlands in Alberta, Canada. Plant Ecol 131:1–16.

    Article  Google Scholar 

  • Tuba Z, Lichtenthaler HK, Csintalan Z, Nagy Z, Szente K. 1996. Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol Plant 96:383–8.

    Article  CAS  Google Scholar 

  • Tuitilla ES, Vasander H, Laine J. 2004. Sensitivity of C sequestration in reintroduced Sphagnum. Restor Ecol 12:483–93.

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH. 2002. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–12.

    Article  CAS  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD. 2007. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Global Change Biol 13:1922–34.

    Article  Google Scholar 

  • Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD. 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res 113:G00A10. doi:10.1029/2007JG000496.

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–63.

    Article  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C. 2001. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11:311–26.

    Google Scholar 

  • Vitt DH. 2006. Functional characteristics and indicators of boreal peatlands. In: Wieder RK, Vitt DH, Eds. Boreal peatland ecosystems. Berlin, Heidelberg, New York: Springer-Verlag. p 1–26.

    Google Scholar 

  • Waddington JM, Rotenberg PA, Warren FJ. 2001. Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54:115–30.

    Article  CAS  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewan SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen Totland AO, Turner PL, Tweedie CE, Webber PJ, Wookey PA. 2006. Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103:1342–6.

    Article  CAS  PubMed  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin C. 2000. Response of bog and fen plant communities to warming and water table manipulations. Ecology 81:3464–78.

    Article  Google Scholar 

  • Wickland KP, Striegl RG, Neff JC, Sachs T. 2006. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland. J Geophys Res 111:G02011. doi:10.1029/2005JG000099.

  • Wilson D, Alm J, Riutta T, Laine J, Byrne KA, Farrell EP, Tuittila E. 2007. A high resolution green area index for modelling the seasonal dynamics of CO2 exchange in peatland vascular plant communities. Plant Ecol 190:37–51.

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac Process 14:151–60.

    Article  Google Scholar 

  • Zoltai SC, Martikainen PJ. 1996. The role of forested peatlands in the global carbon cycle. Nato ASI Series I 40:47–58.

    Google Scholar 

Download references

Acknowledgments

We thank Evan Kane, Claire Treat, Jon O’Donnell, Lee Pruett, Sara Kelzer, Gordon Shetler, Ronnie Daanen, and Neville Millar for field assistance. We are grateful to the Bonanza Creek LTER, in particular Jamie Hollingsworth, Brian Charlton, and Emily Tessier for site construction. We also thank Dale Vitt for moss species identification and Maria Strack for assistance with LAI measurements. Mark Waldrop, Kim Wickland, Scott Bridgham, Gus Shaver, and an anonymous reviewer provided thoughtful comments and review of previous versions of this manuscript. This research was supported by the National Science Foundation Grant DEB-0425328, a National Science Foundation Graduate Research Fellowship to M.R.C., an Environmental Protection Agency Students to Achieve Results Fellowship to M.R.C., and the Bonanza Creek Long-Term Ecological Research program (funded jointly by NSF Grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Grant PNW01-JV11261952-231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Turetsky.

Additional information

Author Contributions

MRC collected and analyzed data and wrote the paper; MRT and JMW analyzed data; all authors helped to design the study and commented on all phases of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10021_2009_9292_MOESM1_ESM.doc

Relationship between net ecosystem exchange of CO2 (NEE) and photosynthetic active radiation (PAR) across each of the gas flux collars within the three water table treatments (control, lowered, raised) during 2006. Solid lines are hyperbolical fits through the data. Model parameters were fit using PROC NLIN in SAS 8.1. Dashed lines represent hyperbolical fits through all of the data within each water table treatment, and enable comparisons between collar-specific models and the model results averaged within each water table treatment. (DOC 299 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chivers, M.R., Turetsky, M.R., Waddington, J.M. et al. Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen. Ecosystems 12, 1329–1342 (2009). https://doi.org/10.1007/s10021-009-9292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-009-9292-y

Keywords

  • peatland
  • boreal
  • wetlands
  • Alaska
  • carbon
  • carbon dioxide
  • climate change
  • drought
  • flooding
  • warming